Skip to main content
Log in

Stability data, irregular connections and tropical curves

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study a class of meromorphic connections \(\nabla (Z)\) on \(\mathbb {P}^1\), parametrised by the central charge Z of a stability condition, with values in a Lie algebra of formal vector fields on a torus. Their definition is motivated by the work of Gaiotto, Moore and Neitzke on wall-crossing and three-dimensional field theories. Our main results concern two limits of the families \(\nabla (Z)\) as we rescale the central charge \(Z \mapsto RZ\). In the \(R \rightarrow 0\) “conformal limit” we recover a version of the connections introduced by Bridgeland and Toledano Laredo (and so the Joyce holomorphic generating functions for enumerative invariants), although with a different construction yielding new explicit formulae. In the \(R \rightarrow \infty \) “large complex structure” limit the connections \(\nabla (Z)\) make contact with the Gross–Pandharipande–Siebert approach to wall-crossing based on tropical geometry. Their flat sections display tropical behaviour, and also encode certain tropical/relative Gromov–Witten invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbieri, A., Stoppa, J.: Frobenius type and CV-structures for Donaldson–Thomas theory and a converge property. arXiv:1512.01176

  2. Boalch, P.: Symplectic manifolds and isomonodromic deformations. Adv. Math. 163, 137–205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boalch, P.: Stokes matrices, Poisson Lie groups and Frobenius manifolds. Invent. Math. 146, 479–506 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boalch, P.: G-bundles, Isomonodromy and quantum Weyl groups. Int. Math. Res. Not. 2002, 1129–1166 (2002)

  5. Bridgeland, T., Toledano-Laredo, V.: Stability conditions and Stokes factors. Invent. Math. 187(1), 61–98 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bridgeland, T., Toledano-Laredo, V.: Stokes factors and multilogarithms. J. Reine Ang. Math. 682, 89–128 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Cecotti, S., Vafa, C.: Topological–antitopological fusion. Nucl. Phys. B 367, 359–461 (1991)

    Article  MATH  Google Scholar 

  8. Dubrovin, B.: Geometry and integrability of topological–antitopological fusion. Commun. Math. Phys. 152(3), 539–564 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fokas, A., Its, A., Kapaev, A., Novokshenov, V.: Painlevé transcendents: the Riemann–Hilbert approach. Mathematical Surveys and Monographs of the AMS (2006)

  10. Gaiotto, D.: Opers and TBA. arXiv:1403.6137

  11. Gaiotto, D., Moore, G., Neitzke, A.: Four dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299(1), 163–224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gathmann, A., Markwig, H.: The numbers of tropical plane curves through points in general position. J. Reine Angew. Math. 602, 155–177 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Gessel, I.M.: A combinatorial proof of the multivariate Lagrange inversion formula. J. Comb. Theory Ser. A 45, 178–195 (1987)

    Article  MATH  Google Scholar 

  14. Gross, M.: Mirror Symmetry and the Strominger–Yau–Zaslow Conjecture. Current Developments in Mathematics. International Press, Boston (2012)

    Google Scholar 

  15. Gross, M., Pandharipande, R., Siebert, B.: The tropical vertex. Duke Math. J. 153(2), 297–362 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hertling, C.: \(tt^*\) geometry, Frobenius manifolds, their connections, and the construction for singularities. J. Reine Angew. Math 555, 77–161 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Joyce, D.: Holomorphic generating functions for invariants counting coherent sheaves on Calabi–Yau 3-folds. Geom. Topol. 11, 667–725 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. arXiv:0811.2435

  19. Kontsevich, M., Soibelman, Y.: Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and Mirror Symmetry. Homological Mirror Symmetry and Tropical Geometry, Lecture Notes of the Unione Matematica Italiana, pp. 197–308 (2014)

  20. Mikhalkin, G.: Enumerative tropical algebraic geometry in \(\mathbb{R}^2\). J. Am. Math. Soc. 18, 313–377 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Muskhelishvili, N.I.: Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics. Dover, New York (1992)

  22. Reineke, M.: The Harder–Narasimhan system in quantum groups and cohomology of quiver moduli. Invent. Math. 152, 349–368 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stoppa, J.: Joyce–Song wall-crossing as an asymptotic expansion. Kyoto J. Math. 54(1), 103–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Stoppa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippini, S.A., Garcia-Fernandez, M. & Stoppa, J. Stability data, irregular connections and tropical curves. Sel. Math. New Ser. 23, 1355–1418 (2017). https://doi.org/10.1007/s00029-016-0299-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0299-x

Mathematics Subject Classification

Navigation