Selecta Mathematica

, Volume 23, Issue 2, pp 1507–1561 | Cite as

Nef divisors for moduli spaces of complexes with compact support

Open Access
Article

Abstract

In Bayer and Macrì (J Am Math Soc 27(3):707–752, 2014), the first author and Macrì constructed a family of nef divisors on any moduli space of Bridgeland-stable objects on a smooth projective variety X. In this article, we extend this construction to the setting of any separated scheme Y of finite type over a field, where we consider moduli spaces of Bridgeland-stable objects on Y with compact support. We also show that the nef divisor is compatible with the polarising ample line bundle coming from the GIT construction of the moduli space in the special case when Y admits a tilting bundle and the stability condition arises from a \(\theta \)-stability condition for the endomorphism algebra. Our main tool generalises the work of Abramovich–Polishchuk (J Reine Angew Math 590:89–130, 2006) and Polishchuk (Mosc Math J 7(1):109–134, 2007): given a t-structure on the derived category \(D_c(Y)\) on Y of objects with compact support and a base scheme S, we construct a constant family of t-structures on a category of objects on \(Y \times S\) with compact support relative to S.

Keywords

Bridgeland stability conditions Derived categories t-structures Moduli spaces of sheaves and complexes Nef divisors 

Mathematics Subject Classification

Primary 14D20 Secondary 14F05 14J28 18E30 

References

  1. 1.
    Arinkin, D., Bezrukavnikov, R.: Perverse coherent sheaves. Mosc. Math. J. 10(1), 3–29, 271 (2010)MATHMathSciNetGoogle Scholar
  2. 2.
    Arcara, D., Bertram, A.: Bridgeland-stable moduli spaces for \(K\)-trivial surfaces. J. Eur. Math. Soc. (JEMS) 15(1), 1–38 (2013). (With an appendix by Max Lieblich)Google Scholar
  3. 3.
    Aspinwall, P. S., Bridgeland, T., Craw, A., Douglas, M.R., Gross, M., Kapustin, A., Moore, G.W., Segal, G., Szendrői, B., Wilson, P.M.H.: Dirichlet branes and mirror symmetry, volume 4 of Clay Mathematics Monographs. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA (2009)Google Scholar
  4. 4.
    Arcara, D., Bertram, A., Coskun, I., Huizenga, J.: The minimal model program for the Hilbert scheme of points on \(\mathbb{P}^2\) and Bridgeland stability. Adv. Math. 235, 580–626 (2013)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Anno, R., Bezrukavnikov, R., Mirković, I.: Stability conditions for Slodowy slices and real variations of stability (2011). arXiv:1108.1563
  6. 6.
    Abramovich, D., Polishchuk, A.: Sheaves of \(t\)-structures and valuative criteria for stable complexes. J. Reine Angew. Math. 590, 89–130 (2006)MATHMathSciNetGoogle Scholar
  7. 7.
    Assem, I., Simson, D., Skowroński, A.: Elements of the representation theory of associative algebras. Vol. 1, volume 65 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge. Techniques of representation theory (2006)Google Scholar
  8. 8.
    Bertram, A., Coskun, I.: The birational geometry of the Hilbert scheme of points on surfaces. Birational geometry, rational curves, and arithmetic, pp. 15–55. Springer, New York (2013)Google Scholar
  9. 9.
    Bolognese, B., Huizenga, J., Lin, Y., Riedl, E., Schmidt, B., Woolf, M., Zhao, X.: Nef cones of Hilbert schemes of points on surfaces (2015). arXiv:1509.04722
  10. 10.
    Butler, M., King, A.: Minimal resolutions of algebras. J. Algebra 212(1), 323–362 (1999)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Bayer, A., Macrì, E.: The space of stability conditions on the local projective plane. Duke Math. J. 160(2), 263–322 (2011)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Bayer, A., Macrì, E.: MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones. Lagrangian Fibrations. Invent. Math. 198(3), 505–590 (2014)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Bayer, A., Macrì, E.: Projectivity and birational geometry of Bridgeland moduli spaces. J. Am. Math. Soc. 27(3), 707–752 (2014)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Bayer, A., Macrì, E., Stellari, P.: The space of stability conditions on abelian threefolds, and on some Calabi-Yau threefolds (2014). arXiv:1410.1585
  15. 15.
    Bertram, A., Martinez, C., Wang, J.: The birational geometry of moduli space of sheaves on the projective plane (2013). arXiv:1301.2011
  16. 16.
    Bridgeland, T.: Stability conditions on a non-compact Calabi-Yau threefold. Commun. Math. Phys. 266(3), 715–733 (2006)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. (2) 166(2), 317–345 (2007)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Bridgeland, T.: Stability conditions on \(K3\) surfaces. Duke Math. J. 141(2), 241–291 (2008)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Bridgeland, T.: Stability conditions and Kleinian singularities. Int. Math. Res. Not. (IMRN) 21, 4142–4157 (2009)MATHMathSciNetGoogle Scholar
  20. 20.
    Bridgeland, T., Stern, D.: Helices on del Pezzo surfaces and tilting Calabi-Yau algebras. Adv. Math. 224(4), 1672–1716 (2010)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Bocklandt, R., Schedler, T., Wemyss, M.: Superpotentials and higher order derivations. J. Pure Appl. Algebra 214(9), 1501–1522 (2010)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Brav, C., Thomas, H.: Braid groups and Kleinian singularities. Math. Ann. 351(4), 1005–1017 (2011)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Choi, J., Chung, K.: The geometry of the moduli space of one-dimensional sheaves. Sci. China Math. 58(3), 487–500 (2015)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Coskun, I., Huizenga, J.: The ample cone of moduli spaces of sheaves on the plane (2014). arXiv:1409.5478
  25. 25.
    Coskun, I., Huizenga, J.: Interpolation, Bridgeland stability and monomial schemes in the plane. J. Math. Pures Appl. (9) 102(5), 930–971 (2014)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Coskun, I., Huizenga, J.: The birational geometry of the moduli spaces of sheaves on \(\mathbb{P}^2\). In: Proceedings of the Gökova Geometry-Topology Conference 2014, pp. 114–155. Gökova Geometry/Topology Conference (GGT), Gökova (2015)Google Scholar
  27. 27.
    Coskun, I., Huizenga, J.: The nef cone of the moduli space of sheaves and strong Bogomolov inequalities (2015). arXiv:1512.02661
  28. 28.
    Coskun, I., Huizenga, J., Woolf, M.: The effective cone of the moduli space of sheaves on the plane (2014). arXiv:1401.1613
  29. 29.
    Craw, A., Ishii, A.: Flops of \(G\)-Hilb and equivalences of derived categories by variation of GIT quotient. Duke Math. J. 124(2), 259–307 (2004)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Eisenbud, D.: Commutative Algebra, Volume 150 of Graduate Texts in Mathematics. Springer, New York (1995). (With a view toward algebraic geometry)Google Scholar
  31. 31.
    Hassett, B., Tschinkel, Y.: Extremal rays and automorphisms of holomorphic symplectic varieties (2015). arXiv:1506.08153
  32. 32.
    Huybrechts, D.: Fourier-Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
  33. 33.
    Hille, L., Van den Bergh, M.: Fourier-Mukai transforms. In: Handbook of tilting theory, volume 332 of London Math. Soc. Lecture Note Ser., pp. 147–177. Cambridge Univ. Press, Cambridge (2007)Google Scholar
  34. 34.
    Ishii, A., Ueda, K.: Dimer models and crepant resolutions. To appear in Hokkaido Mathematical Journal (2013). arXiv:1303.4028
  35. 35.
    Ishii, A., Ueda, K., Uehara, H.: Stability conditions on \(A_n\)-singularities. J. Differ. Geom. 84(1), 87–126 (2010)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Karmazyn, J.: Quiver GIT for varieties with tilting bundles (2014). arXiv:1407.5005
  37. 37.
    King, A.: Moduli of representations of finite-dimensional algebras. Q. J. Math. Oxford Ser. (2) 45(180), 515–530 (1994)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    King, A.: Tilting bundles on some rational surfaces (1997). Unpublished http://www.maths.bath.ac.uk/~masadk/papers/tilt
  39. 39.
    Knudsen, F.F., Mumford, D.: The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”. Math. Scand. 39(1), 19–55 (1976)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Lieblich, M.: Moduli of complexes on a proper morphism. J. Algebraic Geom. 15(1), 175–206 (2006)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Li, C., Zhao, X.: The MMP for deformations of Hilbert schemes of points on the projective plane (2013). arXiv:1312.1748
  42. 42.
    Li, C., Zhao, X.: Birational models of moduli spaces of coherent sheaves on the projective plane (2016). arXiv:1603.05035
  43. 43.
    Manivel, L.: Théorèmes d’annulation sur certaines variétés projectives. Comment. Math. Helv. 71(3), 402–425 (1996)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Miličić, D.: Lectures on Derived Categories (2003). Unpublished lecture notes http://www.math.utah.edu/~milicic/Eprints/dercat
  45. 45.
    Minamide, H., Yanagida, S., Yoshioka, K.: Fourier-mukai transforms and the wall-crossing behavior for Bridgeland’s stability conditions (2011). arXiv:1106.5217
  46. 46.
    Minamide, H., Yanagida, S., Yoshioka, K.: Some moduli spaces of Bridgeland’s stability conditions. Int. Math. Res. Not. 19, 5264–5327 (2014)MATHMathSciNetGoogle Scholar
  47. 47.
    Meachan, C., Zhang, Z.: Birational geometry of singular moduli spaces of O’Grady type. Adv. Math. 296, 210–267 (2016)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Neeman, A.: The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Amer. Math. Soc. 9(1), 205–236 (1996)CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Neeman, A.: Triangulated Categories, Volume 148 of Annals of Mathematics Studies. Princeton University Press, Princeton (2001)Google Scholar
  50. 50.
    Nuer, H.: Projectivity and birational geometry of Bridgeland moduli spaces on an Enriques surface (2014). arXiv:1406.0908
  51. 51.
    Orlov, D.: Projective bundles, monoidal transformations, and derived categories of coherent sheaves. Izv. Ross. Akad. Nauk Ser. Math. 56(4), 852–862 (1992)MATHGoogle Scholar
  52. 52.
    Polishchuk, A.: Constant families of \(t\)-structures on derived categories of coherent sheaves. Mosc. Math. J. 7(1), 109–134 (2007). 167MATHMathSciNetGoogle Scholar
  53. 53.
    Rouquier, R.: Derived categories and algebraic geometry. In: Triangulated Categories, Volume 375 of London Math. Soc. Lecture Note Ser., pp 351–370. Cambridge Univ. Press, Cambridge (2010)Google Scholar
  54. 54.
    Théorie des intersections et théorème de Riemann-Roch. (French) Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6). Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. Lecture Notes in Mathematics, vol. 225, xii\(+\)700, pp. 14–06. Springer, Berlin, New York (1971)Google Scholar
  55. 55.
    The Stacks Project Authors: Stacks project (2016). http://stacks.math.columbia.edu. Accessed 29 Sept 2016
  56. 56.
    Thomas, R. P.: Stability conditions and the braid group. In: Superstring Theory, Volume 1 of Adv. Lect. Math. (ALM), pp 209–233. Int. Press, Somerville, MA (2008)Google Scholar
  57. 57.
    Toda, Y.: Stability conditions and crepant small resolutions. Trans. Am. Math. Soc. 360(11), 6149–6178 (2008)CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    Toda, Y.: Stability conditions and Calabi-Yau fibrations. J. Algebraic Geom. 18(1), 101–133 (2009)CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    van den Bergh, M.: Non-commutative crepant resolutions. In: The legacy of Niels Henrik Abel, pp. 749–770. Springer, Berlin (2004)Google Scholar
  60. 60.
    Matthew W.: Nef and effective cones on the moduli space of torsion sheaves on the projective plane (2013). arXiv:1305.1465
  61. 61.
    Yoshioka, K.: Bridgeland’s stability and the positive cone of the moduli spaces of stable objects on an abelian surface (2012). arXiv:1206.4838

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Mathematics and Maxwell InstituteThe University of EdinburghEdinburghScotland, UK
  2. 2.Department of Mathematical SciencesUniversity of BathClaverton Down, BathUK
  3. 3.Institute for Algebraic GeometryLeibniz University HannoverHannoverGermany

Personalised recommendations