Nef divisors for moduli spaces of complexes with compact support

Abstract

In Bayer and Macrì (J Am Math Soc 27(3):707–752, 2014), the first author and Macrì constructed a family of nef divisors on any moduli space of Bridgeland-stable objects on a smooth projective variety X. In this article, we extend this construction to the setting of any separated scheme Y of finite type over a field, where we consider moduli spaces of Bridgeland-stable objects on Y with compact support. We also show that the nef divisor is compatible with the polarising ample line bundle coming from the GIT construction of the moduli space in the special case when Y admits a tilting bundle and the stability condition arises from a \(\theta \)-stability condition for the endomorphism algebra. Our main tool generalises the work of Abramovich–Polishchuk (J Reine Angew Math 590:89–130, 2006) and Polishchuk (Mosc Math J 7(1):109–134, 2007): given a t-structure on the derived category \(D_c(Y)\) on Y of objects with compact support and a base scheme S, we construct a constant family of t-structures on a category of objects on \(Y \times S\) with compact support relative to S.

References

  1. 1.

    Arinkin, D., Bezrukavnikov, R.: Perverse coherent sheaves. Mosc. Math. J. 10(1), 3–29, 271 (2010)

    MATH  MathSciNet  Google Scholar 

  2. 2.

    Arcara, D., Bertram, A.: Bridgeland-stable moduli spaces for \(K\)-trivial surfaces. J. Eur. Math. Soc. (JEMS) 15(1), 1–38 (2013). (With an appendix by Max Lieblich)

  3. 3.

    Aspinwall, P. S., Bridgeland, T., Craw, A., Douglas, M.R., Gross, M., Kapustin, A., Moore, G.W., Segal, G., Szendrői, B., Wilson, P.M.H.: Dirichlet branes and mirror symmetry, volume 4 of Clay Mathematics Monographs. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA (2009)

  4. 4.

    Arcara, D., Bertram, A., Coskun, I., Huizenga, J.: The minimal model program for the Hilbert scheme of points on \(\mathbb{P}^2\) and Bridgeland stability. Adv. Math. 235, 580–626 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. 5.

    Anno, R., Bezrukavnikov, R., Mirković, I.: Stability conditions for Slodowy slices and real variations of stability (2011). arXiv:1108.1563

  6. 6.

    Abramovich, D., Polishchuk, A.: Sheaves of \(t\)-structures and valuative criteria for stable complexes. J. Reine Angew. Math. 590, 89–130 (2006)

    MATH  MathSciNet  Google Scholar 

  7. 7.

    Assem, I., Simson, D., Skowroński, A.: Elements of the representation theory of associative algebras. Vol. 1, volume 65 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge. Techniques of representation theory (2006)

  8. 8.

    Bertram, A., Coskun, I.: The birational geometry of the Hilbert scheme of points on surfaces. Birational geometry, rational curves, and arithmetic, pp. 15–55. Springer, New York (2013)

  9. 9.

    Bolognese, B., Huizenga, J., Lin, Y., Riedl, E., Schmidt, B., Woolf, M., Zhao, X.: Nef cones of Hilbert schemes of points on surfaces (2015). arXiv:1509.04722

  10. 10.

    Butler, M., King, A.: Minimal resolutions of algebras. J. Algebra 212(1), 323–362 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    Bayer, A., Macrì, E.: The space of stability conditions on the local projective plane. Duke Math. J. 160(2), 263–322 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    Bayer, A., Macrì, E.: MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones. Lagrangian Fibrations. Invent. Math. 198(3), 505–590 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. 13.

    Bayer, A., Macrì, E.: Projectivity and birational geometry of Bridgeland moduli spaces. J. Am. Math. Soc. 27(3), 707–752 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Bayer, A., Macrì, E., Stellari, P.: The space of stability conditions on abelian threefolds, and on some Calabi-Yau threefolds (2014). arXiv:1410.1585

  15. 15.

    Bertram, A., Martinez, C., Wang, J.: The birational geometry of moduli space of sheaves on the projective plane (2013). arXiv:1301.2011

  16. 16.

    Bridgeland, T.: Stability conditions on a non-compact Calabi-Yau threefold. Commun. Math. Phys. 266(3), 715–733 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. 17.

    Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. (2) 166(2), 317–345 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. 18.

    Bridgeland, T.: Stability conditions on \(K3\) surfaces. Duke Math. J. 141(2), 241–291 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. 19.

    Bridgeland, T.: Stability conditions and Kleinian singularities. Int. Math. Res. Not. (IMRN) 21, 4142–4157 (2009)

    MATH  MathSciNet  Google Scholar 

  20. 20.

    Bridgeland, T., Stern, D.: Helices on del Pezzo surfaces and tilting Calabi-Yau algebras. Adv. Math. 224(4), 1672–1716 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. 21.

    Bocklandt, R., Schedler, T., Wemyss, M.: Superpotentials and higher order derivations. J. Pure Appl. Algebra 214(9), 1501–1522 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. 22.

    Brav, C., Thomas, H.: Braid groups and Kleinian singularities. Math. Ann. 351(4), 1005–1017 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. 23.

    Choi, J., Chung, K.: The geometry of the moduli space of one-dimensional sheaves. Sci. China Math. 58(3), 487–500 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  24. 24.

    Coskun, I., Huizenga, J.: The ample cone of moduli spaces of sheaves on the plane (2014). arXiv:1409.5478

  25. 25.

    Coskun, I., Huizenga, J.: Interpolation, Bridgeland stability and monomial schemes in the plane. J. Math. Pures Appl. (9) 102(5), 930–971 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. 26.

    Coskun, I., Huizenga, J.: The birational geometry of the moduli spaces of sheaves on \(\mathbb{P}^2\). In: Proceedings of the Gökova Geometry-Topology Conference 2014, pp. 114–155. Gökova Geometry/Topology Conference (GGT), Gökova (2015)

  27. 27.

    Coskun, I., Huizenga, J.: The nef cone of the moduli space of sheaves and strong Bogomolov inequalities (2015). arXiv:1512.02661

  28. 28.

    Coskun, I., Huizenga, J., Woolf, M.: The effective cone of the moduli space of sheaves on the plane (2014). arXiv:1401.1613

  29. 29.

    Craw, A., Ishii, A.: Flops of \(G\)-Hilb and equivalences of derived categories by variation of GIT quotient. Duke Math. J. 124(2), 259–307 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. 30.

    Eisenbud, D.: Commutative Algebra, Volume 150 of Graduate Texts in Mathematics. Springer, New York (1995). (With a view toward algebraic geometry)

    Google Scholar 

  31. 31.

    Hassett, B., Tschinkel, Y.: Extremal rays and automorphisms of holomorphic symplectic varieties (2015). arXiv:1506.08153

  32. 32.

    Huybrechts, D.: Fourier-Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  33. 33.

    Hille, L., Van den Bergh, M.: Fourier-Mukai transforms. In: Handbook of tilting theory, volume 332 of London Math. Soc. Lecture Note Ser., pp. 147–177. Cambridge Univ. Press, Cambridge (2007)

  34. 34.

    Ishii, A., Ueda, K.: Dimer models and crepant resolutions. To appear in Hokkaido Mathematical Journal (2013). arXiv:1303.4028

  35. 35.

    Ishii, A., Ueda, K., Uehara, H.: Stability conditions on \(A_n\)-singularities. J. Differ. Geom. 84(1), 87–126 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. 36.

    Karmazyn, J.: Quiver GIT for varieties with tilting bundles (2014). arXiv:1407.5005

  37. 37.

    King, A.: Moduli of representations of finite-dimensional algebras. Q. J. Math. Oxford Ser. (2) 45(180), 515–530 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  38. 38.

    King, A.: Tilting bundles on some rational surfaces (1997). Unpublished http://www.maths.bath.ac.uk/~masadk/papers/tilt

  39. 39.

    Knudsen, F.F., Mumford, D.: The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”. Math. Scand. 39(1), 19–55 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  40. 40.

    Lieblich, M.: Moduli of complexes on a proper morphism. J. Algebraic Geom. 15(1), 175–206 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. 41.

    Li, C., Zhao, X.: The MMP for deformations of Hilbert schemes of points on the projective plane (2013). arXiv:1312.1748

  42. 42.

    Li, C., Zhao, X.: Birational models of moduli spaces of coherent sheaves on the projective plane (2016). arXiv:1603.05035

  43. 43.

    Manivel, L.: Théorèmes d’annulation sur certaines variétés projectives. Comment. Math. Helv. 71(3), 402–425 (1996)

    Article  MathSciNet  Google Scholar 

  44. 44.

    Miličić, D.: Lectures on Derived Categories (2003). Unpublished lecture notes http://www.math.utah.edu/~milicic/Eprints/dercat

  45. 45.

    Minamide, H., Yanagida, S., Yoshioka, K.: Fourier-mukai transforms and the wall-crossing behavior for Bridgeland’s stability conditions (2011). arXiv:1106.5217

  46. 46.

    Minamide, H., Yanagida, S., Yoshioka, K.: Some moduli spaces of Bridgeland’s stability conditions. Int. Math. Res. Not. 19, 5264–5327 (2014)

    MATH  MathSciNet  Google Scholar 

  47. 47.

    Meachan, C., Zhang, Z.: Birational geometry of singular moduli spaces of O’Grady type. Adv. Math. 296, 210–267 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  48. 48.

    Neeman, A.: The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Amer. Math. Soc. 9(1), 205–236 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  49. 49.

    Neeman, A.: Triangulated Categories, Volume 148 of Annals of Mathematics Studies. Princeton University Press, Princeton (2001)

    Google Scholar 

  50. 50.

    Nuer, H.: Projectivity and birational geometry of Bridgeland moduli spaces on an Enriques surface (2014). arXiv:1406.0908

  51. 51.

    Orlov, D.: Projective bundles, monoidal transformations, and derived categories of coherent sheaves. Izv. Ross. Akad. Nauk Ser. Math. 56(4), 852–862 (1992)

    MATH  Google Scholar 

  52. 52.

    Polishchuk, A.: Constant families of \(t\)-structures on derived categories of coherent sheaves. Mosc. Math. J. 7(1), 109–134 (2007). 167

    MATH  MathSciNet  Google Scholar 

  53. 53.

    Rouquier, R.: Derived categories and algebraic geometry. In: Triangulated Categories, Volume 375 of London Math. Soc. Lecture Note Ser., pp 351–370. Cambridge Univ. Press, Cambridge (2010)

  54. 54.

    Théorie des intersections et théorème de Riemann-Roch. (French) Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6). Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. Lecture Notes in Mathematics, vol. 225, xii\(+\)700, pp. 14–06. Springer, Berlin, New York (1971)

  55. 55.

    The Stacks Project Authors: Stacks project (2016). http://stacks.math.columbia.edu. Accessed 29 Sept 2016

  56. 56.

    Thomas, R. P.: Stability conditions and the braid group. In: Superstring Theory, Volume 1 of Adv. Lect. Math. (ALM), pp 209–233. Int. Press, Somerville, MA (2008)

  57. 57.

    Toda, Y.: Stability conditions and crepant small resolutions. Trans. Am. Math. Soc. 360(11), 6149–6178 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  58. 58.

    Toda, Y.: Stability conditions and Calabi-Yau fibrations. J. Algebraic Geom. 18(1), 101–133 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  59. 59.

    van den Bergh, M.: Non-commutative crepant resolutions. In: The legacy of Niels Henrik Abel, pp. 749–770. Springer, Berlin (2004)

  60. 60.

    Matthew W.: Nef and effective cones on the moduli space of torsion sheaves on the projective plane (2013). arXiv:1305.1465

  61. 61.

    Yoshioka, K.: Bridgeland’s stability and the positive cone of the moduli spaces of stable objects on an abelian surface (2012). arXiv:1206.4838

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alastair Craw.

Additional information

In memory of Johan Louis Dupont

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayer, A., Craw, A. & Zhang, Z. Nef divisors for moduli spaces of complexes with compact support. Sel. Math. New Ser. 23, 1507–1561 (2017). https://doi.org/10.1007/s00029-016-0298-y

Download citation

Keywords

  • Bridgeland stability conditions
  • Derived categories
  • t-structures
  • Moduli spaces of sheaves and complexes
  • Nef divisors

Mathematics Subject Classification

  • Primary 14D20
  • Secondary 14F05
  • 14J28
  • 18E30