Skip to main content
Log in

D-modules and finite monodromy

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We investigate an analogue of the Grothendieck p-curvature conjecture, where the vanishing of the p-curvature is replaced by the stronger condition, that the module with connection mod p underlies a \({{\mathcal {D}}}_X\)-module structure. We show that this weaker conjecture holds in various situations, for example if the underlying vector bundle is finite in the sense of Nori, or if the connection underlies a \({{\mathbb {Z}}}\)-variation of Hodge structure. We also show isotriviality assuming a coprimality condition on certain mod p Tannakian fundamental groups, which in particular resolves in the projective case a conjecture of Matzat–van der Put.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. André, Y.: Sur la conjecture des \(p\)-courbures de Grothendieck-Katz et un problème de Dwork. In: Geometric aspects of Dwork theory, vol. I, II, pp. 55–112. Walter de Gruyter (2004)

  2. Bost, J.-B.: Algebraic leaves of algebraic foliations over number fields. Publ. math. I. H. É. S. 93, 161–221 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenner, H., Kaid, A.: On deep Frobenius descent and flat bundles. Math. Res. Let. 15, 10001–10015 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Chudnovsky, D., Chudnovsky, G.: Applications of Padé approximation to the Grothendieck conjecture on linear differential equations. In: Number Theory, Lecture Notes in Math. vol. 1135, pp. 52–100 (1985)

  5. Deligne, P.: Théorie de Hodge: II. Publ. math. I. H. É. S. 40, 5–57 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deligne, P., Milne, J.: Tannakian categories. Lect. Notes Math. 900, 101–228 (1982)

    Article  MATH  Google Scholar 

  7. Esnault, H., Mehta, V.: Simply connected projective manifolds in characteristic \(p > 0\) have no non-trivial stratified bundles. Invent. math. 181, 449–465 (2010). Erratum available at http://www.mi.fu-berlin.de/users/esnault/preprints/helene/95-erratum-prop3.2

  8. Esnault, H., Langer, A.: On a positive equicharacteristic variant of the \(p\)-curvature conjecture. Doc. Math. 18, 23–50 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Gieseker, D.: Flat vector bundles and the fundamental group in non-zero characteristics. Ann. Scu. Norm. Sup. Pisa, 4. série 2(1), 1–31 (1975)

  10. Gieseker, D.: On the moduli of vector bundles on an algebraic surface. Ann. Math. 106(1), 45–60 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique I,II,III,IV. Publ. math. I.H.É.S. 4, 8, 11, 17, 20, 24, 28, 32 (1961–1967)

  12. Jordan, C.: Mémoire sur les équations différentielles linéaires à intégrale algébrique, Œuvres II, 13–140 (1878)

  13. Katz, N.: Nilpotent connections and the monodromy theorem: applications of a result of Turrittin. Publ. math. I.H.É.S. 39, 175–232 (1970)

  14. Katz, N.: Algebraic solutions of differential equations (\(p\)-curvature and the Hodge filtration). Invent. Math. 18, 1–118 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Katz, N.: A conjecture in the arithmetic of differential equations. Bull. S.M.F. 110, 203–239 (1982)

    MathSciNet  MATH  Google Scholar 

  16. Lang, S.: Algebraic groups over finite fields. Am. J. Math. 78, 555–563 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lange, H., Stuhler, U.: Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe. Math. Ann. 156, 73–83 (1977)

    MATH  Google Scholar 

  18. Langer, A.: Semistable sheaves in positive characteristic. Ann. Math. 159, 251–276 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Langer, A.: Semistable modules over Lie algebroids in positive characteristic. Doc. Math. 19, 509–540 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Matzat, H., van der Put, M.: Iterative differential equations and the Abhyankar conjecture. J. Reine Ang. Math. 557, 1–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Matzat, H.: Differential equations and finite groups. J. Algebra 300, 673–686 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nori, M.: On the representations of the fundamental group. Compos. Math. 33(1), 29–41 (1976)

    MathSciNet  MATH  Google Scholar 

  23. Nori, M.: The fundamental group-scheme. Proc. Indian Acad. Sci. (Math. Sci.) 91(2), 73–122 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Simpson, C.: Harmonic bundles on noncompact curves. J. Am. Math. Soc. 3, 713–770 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Yves André, Antoine Chambert-Loir and Johan de Jong for their interest and for discussions. We especially thank Sinan Ünver for a close, and perceptive reading of the manuscript, and João Pedro dos Santos for mentioning [21] to us. We thank the referee for a thorough reading and useful comments. The first named author thanks the department of mathematics of Harvard University for hospitality during the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Esnault.

Additional information

To Alexander Beilinson, on the occasion of his 60th birthday, with admiration

The first author is supported by the Einstein program. The second author was partially supported by NSF Grant DMS-0017749000.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esnault, H., Kisin, M. D-modules and finite monodromy. Sel. Math. New Ser. 24, 145–155 (2018). https://doi.org/10.1007/s00029-016-0294-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0294-2

Mathematics Subject Classification

Navigation