Advertisement

Selecta Mathematica

, Volume 23, Issue 2, pp 1249–1278 | Cite as

W-algebras, higher rank false theta functions, and quantum dimensions

  • Kathrin Bringmann
  • Antun MilasEmail author
Article

Abstract

Motivated by appearances of Rogers’ false theta functions in the representation theory of the singlet vertex operator algebra, for each finite-dimensional simple Lie algebra of ADE type, we introduce higher rank false theta functions as characters of atypical modules of certain W-algebras and compute asymptotics of irreducible characters which allows us to determine quantum dimensions of the corresponding modules. In the \({{\text {s}}\ell }_2\)-case, we recover many results from Bringmann and Milas (IMRN 21:11351–11387, 2015).

Keywords

Characters False theta functions Jacobi forms Modular forms Vertex algebras 

Mathematics Subject Classification

17B69 14K25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamović, D., Milas, A.: Logarithmic intertwining operators and \(W(2,2p-1)\)-algebras. J. Math. Phys. 48, 073503 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adamović, D., Milas, A.: On the triplet vertex algebra \(W(p)\). Adv. Math. 217, 2664–2699 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Adamovic, D., Milas, A.: An analogue of modular BPZ equation in logarithmic (super)conformal field theory. Contemp. Math. 497, 1–17 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Adamović, D., Milas, A.: \(C_2\)-cofinite \({\cal{W}}\)-algebras and their logarithmic modules. In: Proceedings of the Conference “Conformal Field Theories and Tensor Categories”, Beijing, June 2011. Springer (2014)Google Scholar
  5. 5.
    Adamović, D., Lin, X., Milas, A.: \(ADE\) subalgebras of the triplet vertex algebra \(\cal {W}\) (p): \(A\)-series. Commun. Contemp. Math. 15, 1350028 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Andrews, G., Berndt, B.: Ramanujan’s Lost Notebook, vol. 2. Springer, Berlin (2009)zbMATHGoogle Scholar
  7. 7.
    Arakawa, T.: Representation theory of \(W\)-algebras. Invent. Math. 169, 219–320 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Borcherds, R.: Vertex algebras, Kac–Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bringmann, K., Creutzig, T., Rolen, L.: Negative index Jacobi forms and quantum modular forms. Res. Math. Sci. 1, 1–32 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bringmann, K., Milas, A.: \(W\)-algebras, false theta functions and quantum modular forms. I.M.R.N 21, 11351–11387 (2015)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Creutzig, T., Milas, A.: The false theta functions and the Verlinde formula. Adv. Math. 262, 520–545 (2014). arXiv:1309.6037 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Creutzig, T., Milas, A.: Higher rank partial and false theta functions and representation theory (submitted). arXiv:1607.08563
  13. 13.
    Creutzig, T., Milas, A., Rupert, M.: Logarithmic link invariants of \(\overline{U}_q^H(\mathfrak{sl} _2)\) and asymptotic dimensions of singlet vertex algebras (submitted). arXiv:1605.05634
  14. 14.
    Creutzig, T., Milas, A., Wood, S.: On regularized quantum dimension of the singlet vertex algebras and false theta functions. I.M.R.N (2016), rnw037. arXiv:1411.3282
  15. 15.
    De Sole, A., Kac, V.: Finite vs affine W-algebras. Jpn. J. Math. 1, 137–261 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Progress in Mathematics 55. Birkhauser-Verlag, Basel (1985)CrossRefzbMATHGoogle Scholar
  17. 17.
    Etingof, P.: A uniform proof of the Macdonald–Mehta–Opdam identity for finite Coxeter groups. Math. Res. Lett. 17, 275–282 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Feigin, B., Tipunin, I.: W-algebras connected with simple Lie algebras, preprint. arXiv:1002.5047
  19. 19.
    Feigin, B., Gaĭnutdinov, A.M., Semikhatov, A.M., Yu Tipunin, I.: The Kazhdan–Lusztig correspondence for the representation category of the triplet \(W\)-algebra in logarithmic conformal field theories (Russian). Teor. Mat. Fiz. 148(3), 398–427 (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Feigin, B., Gaĭnutdinov, A., Semikhatov, A., Tipunin, I.: Logarithmic extensions of minimal models: characters and modular transformations. Nucl. Phys. B 757, 303–343 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Folsom, A., Ono, K., Rhoades, R.: Mock theta functions and quantum modular forms. Forum Math. \(\Pi \) 1:e2 (2013)Google Scholar
  22. 22.
    Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, 88. American Mathematical Society, Providence (2001)zbMATHGoogle Scholar
  23. 23.
    Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster Pure and Applied Mathematics, vol. 134. Academic Press, London (1988)zbMATHGoogle Scholar
  24. 24.
    Fuchs, J., Hwang, S., Semikhatov, A., Tipunin, I.: Nonsemisimple fusion algebras and the Verlinde formula. Commun. Math. Phys. 247(3), 713–742 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Garoufalidis, S., Vuong, T.: A stability conjecture for the colored Jones polynomial, preprint (2013)Google Scholar
  26. 26.
    Gannon, T.: Lattices and theta functions. Ph.D. thesis, McGill (1991)Google Scholar
  27. 27.
    Goodman, R., Wallach, N.: Symmetry, Representations and Invariants, vol. 66. Springer, Dordrecht (2009)CrossRefzbMATHGoogle Scholar
  28. 28.
    Lawrence, R., Zagier, D.: Modular forms and quantum invariants of 3-manifolds. Asian J. Math. 3, 93–108 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations. Birkhauser, Boston (2003)zbMATHGoogle Scholar
  30. 30.
    Milas, A.: Characters of modules of irrational vertex algebras. In: Contributions in Mathematical and Computational Sciences (Proceedings of the Conference on Vertex Algebras and Automorphic Forms), Heidelberg, vol. 8, pp. 1–29 (2014)Google Scholar
  31. 31.
    Milas, A., Penn, M.: Lattice vertex algebras and combinatorial bases: general case and \(\cal{W}\)-algebras. N.Y. J. Math. 18, 621–650 (2012)Google Scholar
  32. 32.
    Semikhatov, A.: Virasoro central charges for Nichols algebras. In: Bai, C., Fuchs, J., Huang, Y.-Z., Kong, L., Runkel, I., Schweigert, C. (eds.) Mathematical Lectures from Peking University, vol. IX, pp. 67–92 (2014)Google Scholar
  33. 33.
    Vignéras, M.-F.: Séries thêta des formes quadratiques indéfinies. Modular Functions of One Variable VI. Springer, Berlin (1977)zbMATHGoogle Scholar
  34. 34.
    Warnaar, O.: Partial theta functions. I. Beyond the last notebook. Proc. Lond. Math. Soc. 87, 363–395 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zagier, D.: Valeurs des fonctions zêta des corps quadratiques réels aux entiers négatifs, Journées Arithmetiques de Caen 1976. Astérisque 41–42, 135–151 (1977)zbMATHGoogle Scholar
  36. 36.
    Zagier, D.: Vassiliev invariants and a strange identity related to the Dedekind eta-function. Topology 40, 945–960 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zagier, D.: Quantum modular forms. In: Quanta of Maths: Conference in Honor of Alain Connes, Clay Mathematics Proceedings 11. AMS and Clay Mathematics Institute, pp. 659-675 (2010)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of CologneCologneGermany
  2. 2.Department of Mathematics and StatisticsSUNY-AlbanyAlbanyUSA

Personalised recommendations