Skip to main content
Log in

Representation schemes and rigid maximal Cohen–Macaulay modules

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \(\mathbf {k}\) be an algebraically closed field and A be a finitely generated, centrally finite, nonnegatively graded (not necessarily commutative) \(\mathbf {k}\)-algebra. In this note we construct a representation scheme for graded maximal Cohen–Macaulay A modules. Our main application asserts that when A is commutative with an isolated singularity, for a fixed multiplicity, there are only finitely many indecomposable rigid (i.e, with no nontrivial self-extensions) MCM modules up to shifting and isomorphism. We appeal to a result by Keller, Murfet, and Van den Bergh to prove a similar result for rings that are completion of graded rings. Finally, we discuss how finiteness results for rigid MCM modules are related to recent work by Iyama and Wemyss on maximal modifying modules over compound Du Val singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, K.A., Hajarnavis, C.R., MacEacharn, A.B.: Rings of finite global dimension integral over their centres. Comm. Algebra 11(1), 67–93 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Crawley-Boevey, W., Etingof, P., Ginzburg, V.: Noncommutative geometry and quiver algebras. Adv. Math. 209(1), 274–336 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cuntz, J., Quillen, D.: Algebra extensions and nonsingularity. J. Am. Math. Soc. 8(2), 251–289 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chrstensen, Lars Winther, Sather-Wagstaff, Sean: A Cohen–Macaulay algebra has only finitely many semidualizing modules. Math. Proc. Cambridge Philos. Soc. 145(3), 601–603 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dao, H., Peeva, Irena: Some homological properties of modules over a complete intersection, with applications. In: Peeva, Irena (ed.) Commutative Algebra, pp. 335–371. Springer, New York (2013)

    Chapter  Google Scholar 

  6. Dao, H., Huneke, C.: Vanishing of Ext, cluster tilting modules and finite global dimension of endomorphism rings. Am. J. Math. 135(2), 561–578 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dao, H., Kurano, K.: Boundary and shape of the Cohen–Macaulay cone. Math. Ann. 364, 713–736 (2016). doi:10.1007/s00208-015-1231-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Gabriel, P.: Finite representation type is open. In: Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 10, pp. 23. Carleton Math. Lecture Notes, No. 9. Carleton Univ., Ottawa, Ont. (1974)

  9. Happel, D.: Selforthogonal modules. In: Abelian groups and modules (Padova, 1994), volume 343 of Math. Appl., pp. 257–276. Kluwer Acad. Publ., Dordrecht (1995)

  10. Iyama, O., Wemyss, M.: Maximal modifications and Auslander-Reiten duality for non-isolated singularities. Invent. Math. 197(3), 521–586 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kac, V.G.: Infinite root systems, representations of graphs and invariant theory. Invent. Math. 56(1), 57–92 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karroum, N.: MCM-einfache moduln. PhD dissertation – Ruhr-Universität Bochum (2009)

  13. Keller, B., Murfet, D., Van den Bergh, M.: On two examples by Iyama and Yoshino. Compos. Math. 147(2), 591–612 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kontsevich, M., Rosenberg, A.L.: Noncommutative smooth spaces. In: The Gelfand Mathematical Seminars, 1996–1999, Gelfand Math. Sem., pp. 85–108. Birkhäuser Boston, Boston, MA (2000)

  15. Kraft, H.: Geometric methods in representation theory. In: Representations of algebras (Puebla, 1980), volume 944 of Lecture Notes in Math., pp. 180–258. Springer, Berlin-New York (1982)

  16. Le Bruyn, L.: Noncommutative geometry and Cayley-smooth orders, volume 290 of Pure and Applied Mathematics (BocaRaton). Chapman & Hall/CRC, Boca Raton, FL (2008)

    Google Scholar 

  17. Macleod, M.: Generalising the Cohen–Macaulay condition and other homological properties. PhD dissertation, University of Glasgow (2010)

  18. Schofield, A.: General representations of quivers. Proc. London Math. Soc. (3) 65(1), 46–64 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Voigt, D.: Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen. Lecture Notes in Mathematics, vol. 592. Springer, Berlin-New York. Mit einer englischen Einführung (1977)

  20. Wemyss, M.: Aspects of the homological minimal model program (2015). arXiv:1411.7189 [math.AG, math.RT]

  21. Yoshino, Y.: Cohen–Macaulay modules over Cohen–Macaulay rings, volume 146 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1990)

Download references

Acknowledgments

We are delighted to thank Bhargav Bhatt and Igor Burban for interesting conversations and correspondence, and Srikanth Iyengar and Michael Wemyss for many helpful comments on an earlier version of this article. The authors are partially supported by NSF awards DMS-1104017 and DMS-1204733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Dao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, H., Shipman, I. Representation schemes and rigid maximal Cohen–Macaulay modules. Sel. Math. New Ser. 23, 1–14 (2017). https://doi.org/10.1007/s00029-016-0226-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0226-1

Mathematics Subject Classification

Navigation