Skip to main content
Log in

Geometric structures with a dense independent subset

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study a generalization of the expansion by an independent dense set, introduced by Dolich, Miller, and Steinhorn in the o-minimal context, to the setting of geometric structures. We introduce the notion of an H-structure of a geometric theory T, show that H-structures exist and are elementarily equivalent, and establish some basic properties of the resulting complete theory \(T^\mathrm{ind}\), including quantifier elimination down to “H-bounded” formulas, and a description of definable sets and algebraic closure. We show that if T is strongly minimal, supersimple of SU-rank 1, or superrosy of thorn-rank 1, then \(T^\mathrm{ind}\) is \(\omega \)-stable, supersimple, and superrosy, respectively, and its U-/SU-/thorn-rank is either 1 (if T is trivial) or \(\omega \) (if T is non-trivial). In the supersimple SU-rank 1 case, we obtain a description of forking and canonical bases in \(T^\mathrm{ind}\). We also show that if T is (strongly) dependent, then so is \(T^\mathrm{ind}\), and if T is non-trivial of finite dp-rank, then \(T^\mathrm{ind}\) has dp-rank greater than n for every \(n<\omega \), but bounded by \(\omega \). In the stable case, we also partially solve the question of whether any group definable in \(T^\mathrm{ind}\) comes from a group definable in T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldwin, J., Benedikt, M.: Stability theory, permutations of indiscernibles, and embedded finite models. Trans. Am. Math. Soc. 352, 4937–4969 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben Yaacov, I., Pillay, A., Vassiliev, E.: Lovely pairs of models. Ann. Pure Appl. Log. 122, 235–261 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berenstein, A., Vassiliev, E.: On lovely pairs of geometric structures. Ann. Pure Appl. Log. 161(7), 866–878 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berenstein, A., Vassiliev, E.: Weakly one-based geometric theories. J. Symb. Log. 77(2), 392–422 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berenstein, A., Vassiliev, E.: Generic trivializations of geometric theories. Math. Log. Q. 60(4–5), 289–303 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berenstein, A., Dolich, A., Onshuus, A.: The independence property in generalized dense pairs of structures. J. Symb. Log. 76(2), 391–404 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boxall, G.: Lovely pairs and dense pairs of real closed fields. Ph.D. thesis, University of Leeds (2009)

  8. Boxall, G., Bradley-Williams, D., Kestner, C., Aziz, A.O., Penazzi, D.: Weak one-basedness. Notre Dame J. Form. Log. 54(3–4), 435–448 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bouscaren, E.: The group configuration-after E. Hrushovski. In: The Model Theory of Groups. Nore Dame Mathematical Lectures

  10. Bouscaren, E., Poizat, B.: Des belles paires aux beaux uples. J. Symb. Log. 53 (1988). Number 11, 1989, pp. 434–442

  11. Buechler, S.: Pseudoprojective strongly minimal sets are locally projective. J. Symb. Log. 56, 1184–1194 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Carmona, J.F.: Forking geometry on theories with an independent predicate. Arch. Math. Logic 54(1–2), 247–255 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chatzidakis, Z., Pillay, A.: Generic structures and simple theories. Ann. Pure Appl. Logic 95(1–3), 71–92 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chernikov, A., Simon, P.: Externally definable sets and dependent pairs. Israel J. Math. 194(1), 409–425 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dolich, A., Miller, C., Steinhorn, C.: Expansions of O-minimal structures by dense independent sets

  16. Fornasiero, A.: Dimension, matroids, and dense pairs of first-order structures. Ann. Pure Appl. Log. 162(7), 514–543 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gagelman, J.: Stability in geometric theories. Ann. Pure Appl. Log. 132, 313–326 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gunaydin, J., Hyeronimi, P.: The real field with the rational points of an elliptic curve. To be published in Fundamenta Mathematica

  19. Hrushovski, E.: Simplicity and the Lascar group (1997, preprint)

  20. Hrushovski, E., Pillay, A.: Groups definable in local fields and pseudo-finite fields. Israel J. Math. 85(1–3), 203–262 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Macintyre, A.: Dense embeddings I: a theorem of Robinson in a general setting. In: Saracino D.H., Weispfenning V.B. (eds.) Model theory and algebra. A memorial tribute to Abraham Robinson. Lecture Notes in Mathematics, vol. 498, pp. 200–219. Springer, Berlin (1975)

  22. Pillay, A., Vassiliev, E.: On lovely pairs and the (\(\exists y\in P\)) quantifier. Notre Dame J. Form. Log. 46(4) (2005)

  23. Pillay, A.: Geometric Stability Theory. Oxford Science publications, Oxford (1996)

    MATH  Google Scholar 

  24. Poizat, B.: Paires de structures stables. J. Symbolic Logic 48(2), 239–249 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shelah, S.: Strongly dependent theories (2005). arXiv:math.LO/0504197

  26. Tomasic, I., Wagner, F.: Applications of the group configuration theorem in simple theories. J. Math. Log. 3(2), 239–255 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. van den Dries, L.: Dense pairs of o-minimal structures. Fund. Math. 157, 61–78 (1998)

    MATH  MathSciNet  Google Scholar 

  28. van den Dries, L., Gunaydin, A.: The fields of real and complex numbers with a multiplicative subgroup. Proc. Lond. Math. Soc. 93, 43–81 (2006)

    Article  MATH  Google Scholar 

  29. Vassiliev, E.: Generic pairs of SU-rank 1 structures. Ann. Pure Appl. Log. 120, 103–149 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Vassiliev, E.: On the weak non-finite cover property and the n-tuples of simple structures. J. Symb. Log. 70(1), 235–251 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Alf Dolich for many helpful discussions on the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Berenstein.

Additional information

The second author was supported by a NSERC Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berenstein, A., Vassiliev, E. Geometric structures with a dense independent subset. Sel. Math. New Ser. 22, 191–225 (2016). https://doi.org/10.1007/s00029-015-0190-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0190-1

Mathematics Subject Classification

Navigation