Skip to main content
Log in

Mapping class groups of trigonal loci

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this paper, we study the topology of the stack \(\mathcal {T}_g\) of smooth trigonal curves of genus g over the complex field. We make use of a construction by the first named author and Vistoli, which describes \(\mathcal {T}_g\) as a quotient stack of the complement of the discriminant. This allows us to use techniques developed by the second named author to give presentations of the orbifold fundamental group of \(\mathcal {T}_g\), and of its substrata with prescribed Maroni invariant, and describe their relation with the mapping class group \(\mathcal {M}ap_g\) of Riemann surfaces of genus g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The study of the kernel will be taken up in a subsequent paper.

References

  1. Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, vol 1. Modern Birkhäuser Classics. Birkhäuser/Springer, New York (2012). Classification of critical points, caustics and wave fronts, Translated from the Russian by Ian Porteous based on a previous translation by Mark Reynolds, Reprint of the 1985 edition

  2. Arsie, A., Vistoli, A.: Stacks of cyclic covers of projective spaces. Compos. Math. 140(3), 647–666 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Birman, J.S., Wajnryb, B.: Threefold branched coverings and the mapping class group of a surface. In: Geometry and Topology, College Park, (1983/84), volume 1167 of Lecture Notes in Mathematics, pp. 24–46. Springer, Berlin (1985)

  4. Bolognesi, M., Vistoli, A.: Stacks of trigonal curves. Trans. Am. Math. Soc. 364(7), 3365–3393 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brown, R., Humphries, S.P.: Orbits under symplectic transvections. II. The case \(K={\bf F}_2\). Proc. Lond. Math. Soc. 52(3), 532–556 (1986)

    Article  MathSciNet  Google Scholar 

  6. Ciliberto, C., Flamini, F.: On the branch curve of a general projection of a surface to a plane. Trans. Am. Math. Soc. 363(7), 3457–3471 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ciliberto, C., Miranda, R., Teicher, M.: Pillow degenerations of \(K3\) surfaces. In: Applications of Algebraic Geometry to Coding Theory, Physics and Computation (Eilat, 2001), vol. 36 of NATO Sci. Ser. II Math. Phys. Chem., pp. 53–63. Kluwer Academic Publisher, Dordrecht (2001)

  8. Dolgachev, I., Libgober, A.: On the fundamental group of the complement to a discriminant variety. In: Algebraic Geometry (Chicago, IL, 1980), vol. 862 of Lecture Notes in Mathematics, pp. 1–25. Springer, Berlin (1981)

  9. Ebeling, W.: Quadratische Formen und Monodromiegruppen von Singularitäten. Math. Ann. 255(4), 463–498 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Edidin, D., Graham, W.: Equivariant intersection theory. Invent. Math. 131(3), 595–634 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Farb, B., Margalit, D.: A Primer on Mapping Class Groups, Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton (2012)

    Google Scholar 

  12. Fulghesu, D., Viviani, F.: The Chow ring of the stack of cyclic covers of the projective line. Ann. Inst. Fourier 61(6), 2249–2275 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Harris, J., Morrison, I.: Moduli of Curves, Graduate Texts in Mathematics, vol. 187. Springer, New York (1998)

  14. Hefez, A., Lazzeri, F.: The intersection matrix of Brieskorn singularities. Invent. Math. 25, 143–157 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hilden, H.M.: Threefold branched coverings of \(S^{3}\). Am. J. Math. 98(4), 989–997 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  16. Janssen, W.A.M.: Skew-symmetric vanishing lattices and their monodromy groups. Math. Ann. 266(1), 115–133 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Janssen, W.A.M.: Skew-symmetric vanishing lattices and their monodromy groups. II. Math. Ann. 272(1), 17–22 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Libgober, A.: On the fundamental group of the space of cubic surfaces. Math. Z. 162(1), 63–67 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lönne, M.: Fundamental groups of projective discriminant complements. Duke Math. J. 150(2), 357–405 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lönne, M.: Fundamental groups of moduli stacks of smooth Weierstrass fibrations, pp. 1–38 (2012) (preprint arXiv:0712.3374)

  21. Looijenga, E.: Artin groups and the fundamental groups of some moduli spaces. J. Topol. 1(1), 187–216 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Maroni, A.: Le serie lineari speciali sulle curve trigonali. Ann. Mat. Pura Appl. 25(4), 343–354 (1946)

    MATH  MathSciNet  Google Scholar 

  23. Miranda, R.: Triple covers in algebraic geometry. Am. J. Math. 107(5), 1123–1158 (1985)

    Article  MATH  Google Scholar 

  24. Pham, F.: Formules de Picard–Lefschetz généralisées et ramification des intégrales. Bull. Soc. Math. Fr. 93, 333–367 (1965)

    MATH  Google Scholar 

  25. Shimada, I.: Singularities of dual varieties in characteristic 3. Geom. Dedicata 120, 141–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shimada, I.: Generalized Zariski–van Kampen theorem and its application to Grassmannian dual varieties. Int. J. Math. 21(5), 591–637 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tyomkin, I.: On Severi varieties on Hirzebruch surfaces. Int. Math. Res. Not. 2007, rnm109-31 (2007). doi:10.1093/imrn/rnm109

  28. Vistoli, A.: The chow ring of \(\cal M_2\). Invent. Math. 131(3), 635–644 (1998). (Appendix to “Equivariant intersection theory” by D. Edidin and W. Graham)

    Article  MathSciNet  Google Scholar 

  29. Zariski, O.: On the Poincaré group of rational plane curves. Am. J. Math. 58(3), 607–619 (1936)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We warmly thank C. Ciliberto, F. Flamini, T. Dedieu, I. Tyomkin , A. Vistoli and F. Catanese for suggestions and fruitful email exchange.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Bolognesi.

Appendix A: The construction of the monodromy map

Appendix A: The construction of the monodromy map

We include here a preliminary discussion of the monodromy map as this notion needs to be defined carefully to get our statements right.

The families of trigonal curves are locally trivial in the complex topology. Hence, in our topological analysis, we want to associate some topological datum to it.

Suppose \(p:E\rightarrow B\) is a G-bundle on a smooth variety B with respect to an action of the group G on the fiber F. So B is covered by open trivialization patches U with chart diagrams

such that a change in trivialization is given by a diagram

where the map on top is given as

$$\begin{aligned} (e,u) \mapsto (g_{U\cap V}(u)\cdot e, u) \end{aligned}$$

for \(u\in U\cap V\) and some continuous \(g:U\cap V \rightarrow G\).

Let I be the unit interval. A map \(\gamma :I\rightarrow B\) gives rise to a pullback bundle

There is a natural bundle map lifting \(\gamma \)

Since I is contractible, the pullback bundle can be trivialized

For a given choice of \(\gamma \) and \(\phi _\gamma \), we get a group element in G

where the third map is the trivialization along I. To define the monodromy map, it thus suffices to show that the component of G to which \(g_{\gamma ,\phi _\gamma }\) belongs is independent of \(\phi _\gamma \) and depends only on the homotopy class of \(\gamma \).

Independence of the trivialization \(\phi _\gamma \) follows directly from formula valid in case of a change in trivialization. The two group elements differ by a group element which is in the path-connected component of the identity.

Independence of the representative \(\gamma \) of a given homotopy class follows similarly. A homotopy gives rise to a pullback bundle over \(I\times I\), which again is trivial by the contractibility of the base. The induced trivializations over the two homotopic paths give the same group element.

The natural consequence of this is the Proposition/Definition that we wanted.

Proposition 4.6

Let \(p:E\rightarrow X\) be a G-bundle on a smooth variety X. The following map given on representatives is well-defined

$$\begin{aligned} \begin{matrix} \pi _1(X, x_0 ) &{} \longrightarrow &{} \pi _0 (G, id) \\ [\gamma ] &{} \mapsto &{} [g_{\gamma ,\phi _{\gamma }}] \end{matrix} \end{aligned}$$

and is called the G-monodromy of the G-bundle \(p:E\rightarrow X\).

Remark 4.7

  1. (i)

    We remark that the monodromy map is in fact part of the long exact homotopy sequence of the corresponding G-bundle.

  2. (ii)

    The definition of monodromy map extends harmlessly to the orbifold context.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolognesi, M., Lönne, M. Mapping class groups of trigonal loci. Sel. Math. New Ser. 22, 417–445 (2016). https://doi.org/10.1007/s00029-015-0187-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0187-9

Keywords

Mathematics Subject Classification

Navigation