Selecta Mathematica

, Volume 21, Issue 3, pp 931–993 | Cite as

Strongly solvable spherical subgroups and their combinatorial invariants

  • Roman AvdeevEmail author


A subgroup \(H\) of an algebraic group \(G\) is said to be strongly solvable if \(H\) is contained in a Borel subgroup of \(G\). This paper is devoted to establishing relationships between the following three combinatorial classifications of strongly solvable spherical subgroups in reductive complex algebraic groups: Luna’s general classification of arbitrary spherical subgroups restricted to the strongly solvable case, Luna’s 1993 classification of strongly solvable wonderful subgroups, and the author’s 2011 classification of strongly solvable spherical subgroups. We give a detailed presentation of all the three classifications and exhibit interrelations between the corresponding combinatorial invariants, which enables one to pass from one of these classifications to any other.


Algebraic group Homogeneous space Representation  Spherical variety Wonderful variety Spherical subgroup Solvable subgroup 

Mathematics Subject Classification

14M27 14M17 05E15 



The author cordially thanks D. Luna for discussions and private notes, which among other things helped the author to learn much about Luna’s general classification of spherical homogeneous spaces. Thanks are also due to I. V. Arzhantsev, P. Bravi, S. Cupit-Foutou, D. A. Timashev, E. B. Vinberg, and V. S. Zhgoon for helpful discussions on particular topics. At last, the author is grateful to the referee for numerous corrections and valuable suggestions.


  1. 1.
    Akhiezer, D.N.: Equivariant completion of homogeneous algebraic varieties by homogeneous divisors. Ann. Global Anal. Geom. 1(1), 49–78 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Avdeev, R.S.: Extended weight semigroups of affine spherical homogeneous spaces of non-simple semisimple algebraic groups. Izv. Math. 74(6), 1103–1126 (2010), see also arXiv:1012.0132 [math.RT]
  3. 3.
    Avdeev, R.S.: On solvable spherical subgroups of semisimple algebraic groups. Trans. Moscow Math. Soc. 2011, 1–44, see also arXiv:1102.4595 [math.GR]
  4. 4.
    Avdeev, R.S.: Normalizers of solvable spherical subgroups. Math. Notes 94(1), 20–31 (2013), see also arXiv:1107.5175 [math.GR]
  5. 5.
    Avdeev, R.S., Gorfinkel, N.E.: Harmonic analysis on spherical homogeneous spaces with solvable stabilizer. Funct. Anal. Appl. 46(3), 161–172 (2012), see also arXiv:1106.1070 [math.RT]
  6. 6.
    Benson, C., Ratcliff, G.: A classification of multiplicity free actions. J. Algebra 181(1), 152–186 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Białynicki-Birula, A.: On induced actions of algebraic groups. Ann. Inst. Fourier 43(2), 365–368 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Białynicki-Birula, A., Hochschild, G., Mostow, G.D.: Extensions of representations of algebraic linear groups. Am. J. Math. 85(1), 131–144 (1963)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bravi, P.: Wonderful varieties of type \(E\). Represent. Theory 11, 174–191 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bravi, P.: Primitive spherical systems. Trans. Am. Math. Soc. 365(1), 361–407 (2013), see also arXiv:0909.3765 [math.RT]
  11. 11.
    Bravi, P., Cupit-Foutou, S.: Classification of strict wonderful varieties. Ann. Inst. Fourier 60(2), 641–681 (2010), see also arXiv:0806.2263 [math.AG]
  12. 12.
    Bravi, P., Luna, D.: An introduction to wonderful varieties with many examples of type \({\sf F}_4\). J. Algebra 329, 4–51 (2011), see also arXiv:0812.2340 [math.AG]
  13. 13.
    Bravi, P., Pezzini, G.: Wonderful varieties of type \(D\). Represent. Theory 9, 578–637 (2005), see also arXiv:math/0410472 [math.RT]
  14. 14.
    Bravi, P., Pezzini, G.: Wonderful subgroups of reductive groups and spherical systems. J. Algebra 409, 101–147 (2014), see also arXiv:1103.0380 [math.AG]
  15. 15.
    Bravi, P., Pezzini, G.: Primitive wonderful varieties. See arXiv:1106.3187 [math.AG]
  16. 16.
    Bravi, P., Pezzini, G.: The spherical systems of the wonderful reductive subgroups. See arXiv:1109.6777 [math.RT]
  17. 17.
    Brion, M.: Classification des espaces homogènes sphériques. Compos. Math. 63(2), 189–208 (1987)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Brion, M.: On spherical varieties of rank one. In: Group actions and invariant theory. CMS Conference proceedings, vol. 10, pp. 31–41. AMS, Providence (1989)Google Scholar
  19. 19.
    Brion, M.: Vers une généralisation des espaces symétriques. J. Algebra 134, 115–143 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Brion, M., Pauer, F.: Valuations des espaces homogènes sphériques. Comment. Math. Helv. 62(2), 265–285 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    de Concini, C., Procesi, C.: Complete symmetric varieties. In: Invariant Theory. Lecture Notes in Mathematics, vol. 996, pp. 1–44. Springer, Berlin (1983)Google Scholar
  22. 22.
    Cox, D.: The homogeneous coordinate ring of a toric variety. J. Algebr. Geom. 4(1), 17–50 (1995), see also arXiv:alg-geom/9210008
  23. 23.
    Cupit-Foutou, S.: Wonderful varieties: a geometrical realization. See arXiv:0907.2852 [math.AG]
  24. 24.
    Demazure, M.: Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. de l’Ecole Norm. Sup. 4e série 3, 507–588 (1970)MathSciNetGoogle Scholar
  25. 25.
    Foschi, A.: Variétés magnifiques et polytopes moment. Thèse de doctorat, Institut Fourier, Université J. Fourier, Grenoble (1998)Google Scholar
  26. 26.
    Fulton, W.: Introduction to Toric Varieties. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  27. 27.
    Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B.: Structure of Lie Groups and Lie Algebras. Lie groups and Lie algebras III. Encyclopaedia of Mathematical Sciences, vol. 41. Springer, Berlin (1994)Google Scholar
  28. 28.
    Grosshans, F.: Algebraic Homogeneous Spaces and Invariant Theory. Lecture Notes in Mathematics, vol. 1673. Springer, Berlin (1997)zbMATHGoogle Scholar
  29. 29.
    Humphreys, J.E.: Linear Algebraic Groups. Springer, New York (1975)CrossRefzbMATHGoogle Scholar
  30. 30.
    Kac, V.G.: Some remarks on nilpotent orbits. J. Algebra 64(1), 190–213 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Knop, F.: Weylgruppe und Momentabbildung. Invent. Math. 99, 1–23 (1990)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Knop, F.: The Luna–Vust theory of spherical embeddings. In: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, India, 1989), pp. 225–249. Manoj Prakashan, Madras (1991)Google Scholar
  33. 33.
    Knop, F.: Automorphisms, root systems, and compactifications of homogeneous varieties. J. Am. Math. Soc. 9(1), 153–174 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Knop, F.: Localization of spherical varieties. Algebra Number Theory 8(3), 703–728 (2014), see also arXiv:1303.2561 [math.RT]
  35. 35.
    Knop, F., van Steirteghem, B.: Classification of smooth affine spherical varieties. Transform. Groups 11(3), 495–516 (2006), see also arXiv:math/0505102 [math.AG]
  36. 36.
    Kostant, B.: Root systems for Levi factors and Borel-de Siebenthal theory. In: Symmetry and Spaces. Progress in Mathematics, vol. 278, pp. 129–152. Birkhäuser, Boston (2010)Google Scholar
  37. 37.
    Krämer, M.: Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen. Comp. Math. 38(2), 129–153 (1979)zbMATHGoogle Scholar
  38. 38.
    Leahy, A.S.: A classification of multiplicity free representations. J. Lie Theory 8(2), 367–391 (1998)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Losev, I.V.: Uniqueness property for spherical homogeneous spaces. Duke Math. J. 147(2), 315–343 (2009), see also arXiv:math/0703543 [math.AG]
  40. 40.
    Luna, D.: Sous-groupes sphériques résolubles. Prépublication de l’Institut Fourier no. 241 (1993)Google Scholar
  41. 41.
    Luna, D.: Toute variété magnifique est sphérique. Transform. Groups 1(3), 249–258 (1996)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Luna, D.: Grosses cellules pour les variétés sphériques. In: Algebraic Groups and Lie Groups. Australian Mathematical Society Lecture Series 9, pp. 267–280. Cambridge University Press, Cambridge (1997)Google Scholar
  43. 43.
    Luna, D.: Variétés sphériques de type A. Inst. Hautes Études Sci. Publ. Math. 94, 161–226 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Luna, D.: La variété magnifique modèle. J. Algebra 313, 292–319 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Luna, D., Vust, Th: Plongements d’espaces homogènes. Comment. Math. Helv. 58(2), 186–245 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Mikityuk, I.V.: On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces. Math. USSR-Sb. 57(2), 527–546 (1987)CrossRefGoogle Scholar
  47. 47.
    Montagard, P.-L.: Une nouvelle propriété de stabilité du pléthysme. Comment. Math. Helv. 71(3), 475–505 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Oda, T.: Convex bodies and algebraic geometry. An introduction to the theory of toric varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 15. Springer, Berlin (1988)Google Scholar
  49. 49.
    Onishchik, A.L., Vinberg, E.B.: Lie groups and algebraic groups. Springer Series in Soviet Mathematics. Springer, Berlin (1990)Google Scholar
  50. 50.
    Panyushev, D.I.: Complexity and rank of homogeneous spaces. Geom. Dedic. 34(3), 249–269 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Panyushev, D.I.: Complexity and nilpotent orbits. Manuscr. Math. 83, 223–237 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Perrin, N.: On the geometry of spherical varieties. Transform. Groups 19(1), 171–223 (2014), see also arXiv:1211.1277 [math.AG]
  53. 53.
    Popov, V.L.: Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles. Math. USSR-Izv. 8(2), 301–327 (1974)CrossRefGoogle Scholar
  54. 54.
    Popov, V.L., Vinberg, E.B.: Invariant theory. In: Algebraic geometry IV: Linear algebraic groups, invariant theory. Encyclopaedia of Mathematical Sciences, vol. 55, pp. 123–278. Springer, Berlin (1994)Google Scholar
  55. 55.
    Serre, J.-P.: Complex Semisimple Lie Algebras. Springer, New York (1987)CrossRefzbMATHGoogle Scholar
  56. 56.
    Sumihiro, H.: Equivariant completion. J. Math. Kyoto Univ. 14(1), 1–28 (1974)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Timashev, D.A.: Homogeneous Spaces and Equivariant Embeddings. Encyclopaedia of Mathematical Sciences, vol. 138. Springer, Berlin (2011)Google Scholar
  58. 58.
    Vinberg, E.B.: Commutative homogeneous spaces and co-isotropic symplectic actions. Russ. Math. Surv. 56(1), 1–60 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Vinberg, E.B., Kimel’fel’d, B.N.: Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups. Funct. Anal. Appl. 12(3), 168–174 (1978)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Yakimova, O.S.: Weakly symmetric spaces of semisimple Lie groups. Moscow Univ. Math. Bull. 57(2), 37–40 (2002)MathSciNetGoogle Scholar
  61. 61.
    Wasserman, B.: Wonderful varieties of rank two. Transform. Groups 1(4), 375–403 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations