The minimal model for the Batalin–Vilkovisky operad

Abstract

The purpose of this paper is to explain and to generalize, in a homotopical way, the result of Barannikov–Kontsevich and Manin, which states that the underlying homology groups of some Batalin–Vilkovisky algebras carry a Frobenius manifold structure. To this extent, we first make the minimal model for the operad encoding BV-algebras explicit. Then, we prove a homotopy transfer theorem for the associated notion of homotopy BV-algebra. The final result provides an extension of the action of the homology of the Deligne–Mumford–Knudsen moduli space of genus 0 curves on the homology of some BV-algebras to an action via higher homotopical operations organized by the cohomology of the open moduli space of genus zero curves. Applications in Poisson geometry and Lie algebra cohomology and to the Mirror Symmetry conjecture are given.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Apostolov V., Gualtieri M.: Generalized Kähler manifolds, commuting complex structures, and split tangent bundles. Commun. Math. Phys. 271(2), 561–575 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2

    Barannikov S.: Non-commutative periods and mirror symmetry in higher dimensions. Commun. Math. Phys 228(2), 281–325 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3

    Bousfield A.K., Curtis E.B., Kan D.M., Quillen D.G., Rector D.L., Schlesinger J.W.: The mod-p lower central series and the Adams spectral sequence. Topology 5, 331–342 (1966)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4

    Beilinson, A., Drinfeld, V.: Chiral Algebras, American Mathematical Society Colloquium Publications, vol. 51. American Mathematical Society, Providence, RI (2004)

  5. 5

    Bellier, O.: Koszul duality of operads over a Hopf algebra (work in progress) (2011)

  6. 6

    Berglund, A.: Homological perturbation theory for algebras over operads. arXiv:0909.3485 (2009)

  7. 7

    Barannikov S., Kontsevich M.: Frobenius manifolds and formality of Lie algebras of polyvector fields. Int. Math. Res. Not. 4, 201–215 (1998)

    MathSciNet  Article  Google Scholar 

  8. 8

    Berger C., Moerdijk I.: Axiomatic homotopy theory for operads. Comment. Math. Helv. 78(4), 805–831 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9

    Brylinski J.-L.: A differential complex for Poisson manifolds. J. Differ. Geom. 28(1), 93–114 (1988)

    MathSciNet  MATH  Google Scholar 

  10. 10

    Batalin I.A., Vilkovisky G.A.: Gauge algebra and quantization. Phys. Lett. B 102(1), 27–31 (1981)

    MathSciNet  Article  Google Scholar 

  11. 11

    Cavalcanti, G.R.: New aspects of the ddc-lemma. arXiv:math/0501406 (2005)

  12. 12

    Cavalcanti G.R.: Formality in generalized Kähler geometry. Topol. Appl. 154(6), 1119–1125 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13

    Carr M.P., Devadoss S.L.: Coxeter complexes and graph-associahedra. Topol. Appl. 153(12), 2155–2168 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14

    Costello, K., Gwilliam, O.: Factorization algebras in perturbative quantum field theory. Available on the home pages of the authors (2011)

  15. 15

    Cao, H.-D., Zhou, J.: DGBV algebras and mirror symmetry. In: First International Congress of Chinese Mathematicians (Beijing, 1998), AMS/IP Studies in Advances Mathematics, vol. 20. American Mathematical Soceity, Providence, RI, pp. 279–289 (2001)

  16. 16

    Drummond-Cole, G.: Homotopically trivializing the circle in the framed little disks. arXiv:1112.1129 (2011)

  17. 17

    Drummond-Cole, G.: Formal formality of the hypercommutative algebras of low dimensional Calabi–Yau varieties. arXiv:1201.6111 (2012)

  18. 18

    De Concini C., Procesi C.: Wonderful models of subspace arrangements. Selecta Math. N.S. 1(3), 459–494 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19

    Drummond-Cole G., Vallette B.: ∞-operads, BV , and hypercommutative. Oberwolfach Rep 28, 1566–1569 (2009)

    Google Scholar 

  20. 20

    Devadoss S., Forcey S.: Marked tubes and the graph multiplihedron. Algebr. Geom. Topol. 8(4), 2081–2108 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21

    Deligne P., Griffiths P., Morgan J., Sullivan D.: Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22

    Dotsenko, V., Khoroshkin, A.: Free resolutions via Gröbner bases. ArXiv e-prints (2009)

  23. 23

    Dotsenko V., Khoroshkin A.: Gröbner bases for operads. Duke Math. J. 153(2), 363–396 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24

    Galvez-Carrillo, I., Tonks, A., Vallette, B.: Homotopy Batalin–Vilkovisky algebras, J. Noncommut. Geom. arXiv:0907.2246 (2011, to appear)

  25. 25

    Getzler E.: Batalin–Vilkovisky algebras and two-dimensional topological field theories. Commun. Math. Phys. 159(2), 265–285 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26

    Getzler E.: Two-dimensional topological gravity and equivariant cohomology. Commun. Math. Phys. 163(3), 473–489 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27

    Getzler, E.: Operads and Moduli Spaces of Genus 0 Riemann Surfaces. The Moduli Space of Curves (Texel Island, 1994). Progress in Mathematics, vol. 129, pp. 199–230. Birkhäuser Boston, Boston, MA (1995)

  28. 28

    Givental, A.B.: Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1(4), 551–568, 645. Dedicated to the memory of I.G. Petrovskii on the occasion of his 100th anniversary (2001)

  29. 29

    Givental A.B.: Semisimple Frobenius structures at higher genus. Internat. Math. Res. Not. 23, 1265–1286 (2001)

    MathSciNet  Article  Google Scholar 

  30. 30

    Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces. hep-th/9403055 (1994)

  31. 31

    Granåker, J.: Strong homotopy properads. Int. Math. Res. Not. IMRN 14 (2007)

  32. 32

    Ginzburg V., Schedler T.: Differential operators and BV structures in noncommutative geometry. Selecta Math. N.S. 16(4), 673–730 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33

    Gualtieri, M.: Generalized complex geometry. arXiv:math/0401221 (2004)

  34. 34

    Hinich V.: Homological algebra of homotopy algebras. Commun. Algebra 25(10), 3291–3323 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35

    Hirschhorn, P.S.: Model Categories and Their Localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence, RI (2003)

  36. 36

    Hitchin N.: Generalized Calabi–Yau manifolds. Q. J. Math. 54(3), 281–308 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37

    Hoefel, E., Livernet, M.: OCHA and Leibniz pairs, towards a Koszul duality. arXiv:math/1104.3607 (2011)

  38. 38

    Hirsh, J., Millès, J.: Curved Koszul duality theory, arXiv.org:1008.5368 (2010, to appear Math. Ann.)

  39. 39

    Hoffbeck E.: A Poincaré–Birkhoff–Witt criterion for Koszul operads. Manuscripta Math. 131(1–2), 87–110 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40

    Kontsevich M., Manin Yu.: Gromov–Witten classes, quantum cohomology, and enumerative geometry. Comm. Math. Phys. 164(3), 525–562 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41

    Khoroshkin, A., Markarian, N., Shadrin, S.: On quasi-isomorphism of hycom and bv/δ (2011, in preparation)

  42. 42

    Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2, pp. 120–139 (Zürich, 1994) Birkhäuser, Basel (1995)

  43. 43

    Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44

    Koszul, J.-L.: Crochet de Schouten–Nijenhuis et cohomologie, Astérisque (1985) Numero Hors Serie, The Mathematical Heritage of Élie Cartan, Lyon, pp. 257–271 (1984)

  45. 45

    Kodaira K., Spencer D.C.: On deformations of complex analytic structures. I, II. Ann. Math. 2(67), 328–466 (1958)

    MathSciNet  Article  Google Scholar 

  46. 46

    Kodaira K., Spencer D.C.: On deformations of complex analytic structures. III. Stability theorems for complex structures. Ann. Math. 71, 43–76 (1960)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47

    Li, Y.: On deformations of generalized complex structures: the generalized Calabi–Yau case. arXiv:hep-th/0508030 (2005)

  48. 48

    Lichnerowicz A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Differ. Geom. 12(2), 253–300 (1977)

    MathSciNet  MATH  Google Scholar 

  49. 49

    Loday J.-L.: Realization of the Stasheff polytope. Arch. Math. 83(3), 267–278 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  50. 50

    Losev A., Shadrin S.: From Zwiebach invariants to Getzler relation. Commun. Math. Phys. 271(3), 649–679 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  51. 51

    Loday, J.-L., Vallette, B.: Algebraic operads, Grundlehren Math. Wiss. 346, Springer, Heidelberg, (2012)

  52. 52

    Manin, Y.I.: Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, American Mathematical Society Colloquium Publications, vol. 47. American Mathematical Society, Providence, RI (1999)

  53. 53

    Markl M.: Models for operads. Commun. Algebra 24(4), 1471–1500 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  54. 54

    Markarian, N.: hycom = bv/δ A blog post available through the URL http://nikitamarkarian.wordpress.com/2009/11/22/hycommbv?/ (2009)

  55. 55

    Massey, W.S.: Some higher order cohomology operations. In: Symposium internacional de topologí a algebraica. International Symposium on Algebraic Topology. Universidad Nacional Autónoma de México and UNESCO, Mexico City, pp. 145–154 (1958)

  56. 56

    Mathieu O.: Harmonic cohomology classes of symplectic manifolds. Comment. Math. Helv. 70(1), 1–9 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  57. 57

    Merkulov S.A.: Formality of canonical symplectic complexes and Frobenius manifolds. Int. Math. Res. Not. 14, 727–733 (1998)

    MathSciNet  Article  Google Scholar 

  58. 58

    Mac Lane, S.: Homology, Classics in Mathematics. Reprint of the 1975 edition. Springer, Berlin (1995)

  59. 59

    Markl, M., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96. American Mathematical Society, Providence, RI (2002)

  60. 60

    Merkulov S., Vallette B.: Deformation theory of representations of prop(erad)s. I. J. Reine Angew. Math. 634, 51–106 (2009)

    MathSciNet  MATH  Google Scholar 

  61. 61

    Merkulov S., Vallette B.: Deformation theory of representations of prop(erad)s. II. J. Reine Angew. Math. 636, 123–174 (2009)

    MathSciNet  MATH  Google Scholar 

  62. 62

    Park J.-S.: Semi-classical quantum field theories and Frobenius manifolds. Lett. Math. Phys. 81(1), 41–59 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  63. 63

    Priddy S.B.: Koszul resolutions. Trans. Am. Math. Soc. 152, 39–60 (1970)

    MathSciNet  MATH  Article  Google Scholar 

  64. 64

    Peters, C.A.M., Steenbrink, J.H.M.: Mixed Hodge structures. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52, Springer, Berlin (2008)

  65. 65

    Quillen D.: Rational homotopy theory. Ann. Math. 90, 205–295 (1969)

    MathSciNet  MATH  Article  Google Scholar 

  66. 66

    Retakh V.S.: Lie–Massey brackets and n-homotopically multiplicative maps of differential graded Lie algebras. J. Pure Appl. Algebra 89(1–2), 217–229 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  67. 67

    Rezk, C.W.: Spaces of algebra structures and cohomology of operads. Ph.D. thesis, MIT (1996)

  68. 68

    Sullivan D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1978)

    Google Scholar 

  69. 69

    Terilla J.: Smoothness theorem for differential BV algebras. J. Topol. 1(3), 693–702 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  70. 70

    Van der Laan, P.: Operads up to homotopy and deformations of operad maps. arXiv:math.QA/0208041 (2002)

  71. 71

    Van der Laan, P.: Coloured Koszul duality and strongly homotopy operads. arXiv:math.QA/0312147 (2003)

  72. 72

    Wang J.S.P.: On the cohomology of the mod-2 Steenrod algebra and the non-existence of elements of Hopf invariant one. Ill. J. Math 11, 480–490 (1967)

    MATH  Google Scholar 

  73. 73

    Xu P.: Gerstenhaber algebras and BV-algebras in Poisson geometry. Commun. Math. Phys. 200(3), 545–560 (1999)

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bruno Vallette.

Additional information

Gabriel C. Drummond-Cole was supported by the National Science Foundation under Award No. DMS-1004625 and Bruno Vallette was supported by the ANR grant JCJC06 OBTH.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Drummond-Cole, G.C., Vallette, B. The minimal model for the Batalin–Vilkovisky operad. Sel. Math. New Ser. 19, 1–47 (2013). https://doi.org/10.1007/s00029-012-0098-y

Download citation

Keywords

  • Operad
  • Batalin–Vilkovisky algebra
  • Moduli spaces of curves
  • Homotopy algebra
  • Frobenius manifold

Mathematics Subject Classification (1991)

  • Primary 18D50
  • Secondary 18G55
  • 53D45
  • 55P48