Skip to main content
Log in

Dirac cohomology of highest weight modules

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We show that the Dirac cohomology coincides with nilpotent Lie algebra (co)homology up to a twist of a one-dimensional character for simple highest weight modules. As a consequence, we determine the Dirac cohomology of simple highest weight modules explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein J., Gelfand I., Gelfand S.: Category of \({\mathfrak{g}}\) -modules. Funct. Anal. Appl. 10, 87–92 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beilinson A., Ginzburg V., Soergel W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9, 473–527 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boe B., Hunziker M.: Kostant modules in blocks of category \({\mathcal{O}^\mathfrak{p}}\) . Commun. Algebra 37, 323–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casian L., Collingwood D.: The Kazhdan–Lusztig conjecture for parabolic Verma modules. Math. Z. 195, 581–600 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casselman W., Osborne M.: The \({\mathfrak{n}}\) -cohomology of representations with an infinitesimal character. Comp. Math. 31, 219–227 (1975)

    MathSciNet  MATH  Google Scholar 

  6. Deodhar V.: On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan–Lusztig polynomials. J. Algebra 111, 483–506 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong C.-P., Huang J.-S.: Jacquet modules and Dirac cohomology. Adv. Math. 226, 2911–2934 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Enright T.: Analogues of Kostant’s \({\mathfrak{u}}\) -cohomology formulas for unitary highest weight modules. J. Reine Angew. Math. 392, 27–36 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Enright, T., Sheldon, B.: Categories of highest weight modules: applications to classical Hermitian symmetric pairs. Mem. Am. Math. Soc. 67(367), iv+94 (1987)

  10. Huang J.-S, Pandžić P.: Dirac cohomology, unitary representations and a proof of a conjecture of Vogan. J. Am. Math. Soc. 15, 185–202 (2002)

    Article  MATH  Google Scholar 

  11. Huang, J.-S, Pandžić, P.: Dirac Operator in Representation Theory. Mathematics Theory and Applications. Birkhäuser, Boston (2006)

  12. Huang J.-S., Kang Y.-F., Pandžić P.: Dirac cohomology of some Harish-Chandra modules. Transform. Groups 14, 163–173 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang J.-S, Pandžić P., Renard D.: Dirac operators and Lie algebra cohomology. Represent. Theory 10, 299–313 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Humphreys, J.: Representations of Semisimple Lie Algebras in the BGG Category \({\mathcal{O}}\) . GSM, vol. 94. American Mathematical Soceity, Providence (2008)

  15. Irving R.: Singular blocks of the category \({\mathcal{O}}\) . Math. Z. 204, 209–224 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kostant B.: A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups. Duke Math. J. 100, 447–501 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kostant B.: A generalization of the Bott–Borel–Weil theorem and Euler number multiplets of representations. Lett. Math. Phys. 52, 61–78 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kostant B.: Dirac cohomology for the cubic Dirac operator, studies in memory of Issai Schur. Prog. Math. 210, 69–93 (2003)

    MathSciNet  Google Scholar 

  19. Schmid W.: Vanishing theorems for Lie algebra cohomology and the cohomology of discrete subgroups of semisimple Lie groups. Adv. Math. 41, 78–113 (1981)

    Article  MATH  Google Scholar 

  20. Soergel W.: \({\mathfrak{n}}\) -cohomology of simple highest weight modules on walls and purity. Invent. Math. 98, 565–580 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Soergel W., Kategorie O.: Perverse Garben Und Moduln Uber Den Koinvariantez Zur Weylgruppe. J. Am. Math. Soc. 3, 421–445 (1990)

    MATH  Google Scholar 

  22. Vogan, D. Jr.: Dirac operators and unitary representationss, 3 talks at MIT Lie groups seminar, Fall (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Song Huang.

Additional information

The research described in this paper is supported by research grants from the Research Grant Council of Hong Kong SAR, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, JS., Xiao, W. Dirac cohomology of highest weight modules. Sel. Math. New Ser. 18, 803–824 (2012). https://doi.org/10.1007/s00029-011-0085-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-011-0085-8

Keywords

Mathematics Subject Classification (2000)

Navigation