Gelfand–Tsetlin algebras and cohomology rings of Laumon spaces


Laumon moduli spaces are certain smooth closures of the moduli spaces of maps from the projective line to the flag variety of GL n . We calculate the equivariant cohomology rings of the Laumon moduli spaces in terms of Gelfand–Tsetlin subalgebra of U(gl n ) and formulate a conjectural answer for the small quantum cohomology rings in terms of certain commutative shift of argument subalgebras of U(gl n ).

This is a preview of subscription content, log in to check access.


  1. 1

    Braverman, A.: Instanton counting via affine Lie algebras I. Equivariant J-functions of (affine) flag manifolds and Whittaker vectors, CRM Proc. Lecture Notes 38, Amer. Math. Soc., Providence, RI 113–132 (2004)

  2. 2

    Braverman A., Finkelberg M.: Finite difference quantum Toda lattice via equivariant K-theory. Transform Groups 10, 363–386 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3

    Chriss N., Ginzburg V.: Representation Theory and Complex Geometry. Birkhäuser, Boston (1997)

    Google Scholar 

  4. 4

    De Concini, C.: unpublished manuscript (1995)

  5. 5

    Ellingsrud G., Stromme S.A.: Towards the Chow ring of the Hilbert scheme of \({\mathbb P^2}\). J. Reine Angew. Math. 441, 33–44 (1993)

    MathSciNet  MATH  Google Scholar 

  6. 6

    Feigin B., Finkelberg M., Kuznetsov A., Mirković I.: Semiinfinite flags II. Local and global intersection Cohomology of Quasimaps’ spaces. Am. Math. Soc. Transl. Ser. 2(194), 113–148 (1999)

    Google Scholar 

  7. 7

    Felder G., Markov Y., Tarasov V., Varchenko A.: Differential equations compatible with KZ equations. Math. Phys. Anal. Geom. 3, 139–177 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8

    Finkelberg M., Kuznetsov A.: Global Intersection Cohomology of Quasimaps’ spaces. Intern. Math. Res. Not. 7, 301–328 (1997)

    MathSciNet  Article  Google Scholar 

  9. 9

    Finkelberg M., Kuznetsov A., Markarian N., Mirković I.: A note on a symplectic structure on the space of G-Monopoles. Commun. Math. Phys. 201, 411–421 (1999)

    MATH  Article  Google Scholar 

  10. 10

    Givental A., Lee Y.-P.: Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups. Invent. math. 151, 193–219 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11

    Jimbo, M.: Quantum R matrix related to the generalized Toda system: an algebraic approach, Lecture Notes in Phys. vol 246, pp. 335–361. Springer, Berlin (1986)

  12. 12

    Kostant, B., Wallach, N.: Gelfand-Zeitlin theory from the perspective of classical mechanics. I, Progr. Math. vol 243, pp. 319–364. Birkhaüser Boston. Boston, MA (2006)

  13. 13

    Laredo V.T.: A Kohno-Drinfeld theorem for quantum Weyl groups. Duke Math. J. 112(3), 421–451 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14

    Laumon G.: Faisceaux Automorphes Liés aux Séries d’Eisenstein. Perspect. Math. 10, 227–281 (1990)

    MathSciNet  Google Scholar 

  15. 15

    Laumon G.: Un analogue global du Cône Nilpotent. Duke Math. J. 57, 647–671 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16

    Lusztig, G.: Introduction to quantum groups, Progress in Mathematics 110, Birkhaüser Boston, Inc., Boston, MA (1993), xii+341 pp. ISBN: 0-8176-3712-5

  17. 17

    Millson J., Laredo V.T.: Casimir operators and monodromy representations of generalised braid groups. Transform. Groups 10(2), 217–254 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18

    Molev A.I.: Gelfand-Tsetlin bases for classical Lie algebras. In: Hazewinkel, M. (eds) Handbook of Algebra, pp. 109–170. Elsevier, Amsterdam (2006)

    Google Scholar 

  19. 19

    Molev A.I., Tolstoy V.N., Zhang R.B.: On irreducibility of tensor products of evaluation modules for the quantum affine algebra. J. Phys. A Math. Gen. 37, 2385–2399 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20

    Negut, A.: Laumon spaces and many-body systems, thesis, Princeton University (2008)

  21. 21

    Negut A.: Laumon spaces and the Calogero-Sutherland integrable system. Invent. Math. 178, 299–331 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22

    Rybnikov L.G.: Centralizers of some quadratic elements in Poisson-Lie algebras and a method for the translation of invariants. Russian Math. Surveys 60(2), 367–369 (2005) math.QA/0608586

    MathSciNet  MATH  Article  Google Scholar 

  23. 23

    Rybnikov L.G.: The shift of invariants method and the Gaudin model. Funct. Anal. Appl. 40(3), 188–199 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24

    Tarasov A.A.: The maximality of some commutative subalgebras in Poisson algebras of semisimple Lie algebras. Russian Math. Surv 57(5), 1013–1014 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25

    Vinberg E.B.: Some commutative subalgebras of a universal enveloping algebra. Math. USSR Izv. 36(1), 1–22 (1991)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Michael Finkelberg.

Additional information

To the memory of Izrail Moiseevich Gelfand

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feigin, B., Finkelberg, M., Frenkel, I. et al. Gelfand–Tsetlin algebras and cohomology rings of Laumon spaces. Sel. Math. New Ser. 17, 337–361 (2011).

Download citation

Mathematics Subject Classification (2000)

  • 20C99