Selecta Mathematica

, Volume 17, Issue 2, pp 337–361 | Cite as

Gelfand–Tsetlin algebras and cohomology rings of Laumon spaces

  • Boris Feigin
  • Michael FinkelbergEmail author
  • Igor Frenkel
  • Leonid Rybnikov


Laumon moduli spaces are certain smooth closures of the moduli spaces of maps from the projective line to the flag variety of GL n . We calculate the equivariant cohomology rings of the Laumon moduli spaces in terms of Gelfand–Tsetlin subalgebra of U(gl n ) and formulate a conjectural answer for the small quantum cohomology rings in terms of certain commutative shift of argument subalgebras of U(gl n ).

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braverman, A.: Instanton counting via affine Lie algebras I. Equivariant J-functions of (affine) flag manifolds and Whittaker vectors, CRM Proc. Lecture Notes 38, Amer. Math. Soc., Providence, RI 113–132 (2004)Google Scholar
  2. 2.
    Braverman A., Finkelberg M.: Finite difference quantum Toda lattice via equivariant K-theory. Transform Groups 10, 363–386 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chriss N., Ginzburg V.: Representation Theory and Complex Geometry. Birkhäuser, Boston (1997)zbMATHGoogle Scholar
  4. 4.
    De Concini, C.: unpublished manuscript (1995)Google Scholar
  5. 5.
    Ellingsrud G., Stromme S.A.: Towards the Chow ring of the Hilbert scheme of \({\mathbb P^2}\). J. Reine Angew. Math. 441, 33–44 (1993)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Feigin B., Finkelberg M., Kuznetsov A., Mirković I.: Semiinfinite flags II. Local and global intersection Cohomology of Quasimaps’ spaces. Am. Math. Soc. Transl. Ser. 2(194), 113–148 (1999)Google Scholar
  7. 7.
    Felder G., Markov Y., Tarasov V., Varchenko A.: Differential equations compatible with KZ equations. Math. Phys. Anal. Geom. 3, 139–177 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Finkelberg M., Kuznetsov A.: Global Intersection Cohomology of Quasimaps’ spaces. Intern. Math. Res. Not. 7, 301–328 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Finkelberg M., Kuznetsov A., Markarian N., Mirković I.: A note on a symplectic structure on the space of G-Monopoles. Commun. Math. Phys. 201, 411–421 (1999)zbMATHCrossRefGoogle Scholar
  10. 10.
    Givental A., Lee Y.-P.: Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups. Invent. math. 151, 193–219 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Jimbo, M.: Quantum R matrix related to the generalized Toda system: an algebraic approach, Lecture Notes in Phys. vol 246, pp. 335–361. Springer, Berlin (1986)Google Scholar
  12. 12.
    Kostant, B., Wallach, N.: Gelfand-Zeitlin theory from the perspective of classical mechanics. I, Progr. Math. vol 243, pp. 319–364. Birkhaüser Boston. Boston, MA (2006)Google Scholar
  13. 13.
    Laredo V.T.: A Kohno-Drinfeld theorem for quantum Weyl groups. Duke Math. J. 112(3), 421–451 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Laumon G.: Faisceaux Automorphes Liés aux Séries d’Eisenstein. Perspect. Math. 10, 227–281 (1990)MathSciNetGoogle Scholar
  15. 15.
    Laumon G.: Un analogue global du Cône Nilpotent. Duke Math. J. 57, 647–671 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Lusztig, G.: Introduction to quantum groups, Progress in Mathematics 110, Birkhaüser Boston, Inc., Boston, MA (1993), xii+341 pp. ISBN: 0-8176-3712-5Google Scholar
  17. 17.
    Millson J., Laredo V.T.: Casimir operators and monodromy representations of generalised braid groups. Transform. Groups 10(2), 217–254 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Molev A.I.: Gelfand-Tsetlin bases for classical Lie algebras. In: Hazewinkel, M. (eds) Handbook of Algebra, pp. 109–170. Elsevier, Amsterdam (2006)Google Scholar
  19. 19.
    Molev A.I., Tolstoy V.N., Zhang R.B.: On irreducibility of tensor products of evaluation modules for the quantum affine algebra. J. Phys. A Math. Gen. 37, 2385–2399 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Negut, A.: Laumon spaces and many-body systems, thesis, Princeton University (2008)Google Scholar
  21. 21.
    Negut A.: Laumon spaces and the Calogero-Sutherland integrable system. Invent. Math. 178, 299–331 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Rybnikov L.G.: Centralizers of some quadratic elements in Poisson-Lie algebras and a method for the translation of invariants. Russian Math. Surveys 60(2), 367–369 (2005) math.QA/0608586MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Rybnikov L.G.: The shift of invariants method and the Gaudin model. Funct. Anal. Appl. 40(3), 188–199 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Tarasov A.A.: The maximality of some commutative subalgebras in Poisson algebras of semisimple Lie algebras. Russian Math. Surv 57(5), 1013–1014 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Vinberg E.B.: Some commutative subalgebras of a universal enveloping algebra. Math. USSR Izv. 36(1), 1–22 (1991)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Boris Feigin
    • 1
  • Michael Finkelberg
    • 2
    Email author
  • Igor Frenkel
    • 3
  • Leonid Rybnikov
    • 4
  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia
  2. 2.Department of MathematicsIMU, IITP and State University Higher School of EconomicsMoscowRussia
  3. 3.Department of MathematicsYale UniversityNew HavenUSA
  4. 4.Department of MathematicsInstitute for the Information Transmission Problems and State University Higher School of EconomicsMoscowRussia

Personalised recommendations