Skip to main content
Log in

Representations of twisted Yangians associated with skew Young diagrams

  • Original paper
  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let $G_M$ be either the orthogonal group $O_M$ or the symplectic group $Sp_M$ over the complex field; in the latter case the non-negative integer $M$ has to be even. Classically, the irreducible polynomial representations of the group $G_M$ are labeled by partitions $\mu=(\mu_{1},\mu_{2},\,\ldots)$ such that $\mu^{\prime}_1+\mu^{\prime}_2\le M$ in the case $G_M=O_M$, or $2\mu^{\prime}_1\le M$ in the case $G_M=Sp_M$. Here $\mu^{\prime}=(\mu^{\prime}_{1},\mu^{\prime}_{2},\,\ldots)$ is the partition conjugate to $\mu$. Let $W_\mu$ be the irreducible polynomial representation of the group $G_M$ corresponding to $\mu$.

Regard $G_N\times G_M$ as a subgroup of $G_{N+M}$. Then take any irreducible polynomial representation $W_\lambda$ of the group $G_{N+M}$. The vector space $W_{\lambda}(\mu)={\rm Hom}_{\,G_M}( W_\mu, W_\lambda)$ comes with a natural action of the group $G_N$. Put $n=\lambda_1-\mu_1+\lambda_2-\mu_2+\ldots\,$. In this article, for any standard Young tableau $\varOmega$ of skew shape $\lm$ we give a realization of $W_{\lambda}(\mu)$ as a subspace in the $n$-fold tensor product $(\mathbb{C}^N)^{\bigotimes n}$, compatible with the action of the group $G_N$. This subspace is determined as the image of a certain linear operator $F_\varOmega (M)$ on $(\mathbb{C}^N)^{\bigotimes n}$, given by an explicit formula.

When $M=0$ and $W_{\lambda}(\mu)=W_\lambda$ is an irreducible representation of the group $G_N$, we recover the classical realization of $W_\lambda$ as a subspace in the space of all traceless tensors in $(\mathbb{C}^N)^{\bigotimes n}$. Then the operator $F_\varOmega\(0)$ may be regarded as the analogue for $G_N$ of the Young symmetrizer, corresponding to the standard tableau $\varOmega$ of shape $\lambda$. This symmetrizer is a certain linear operator on $\CNn$$(\mathbb{C}^N)^{\bigotimes n} $ with the image equivalent to the irreducible polynomial representation of the complex general linear group $GL_N$, corresponding to the partition $\lambda$. Even in the case $M=0$, our formula for the operator $F_\varOmega(M)$ is new.

Our results are applications of the representation theory of the twisted Yangian, corresponding to the subgroup $G_N$ of $GL_N$. This twisted Yangian is a certain one-sided coideal subalgebra of the Yangian corresponding to $GL_N$. In particular, $F_\varOmega(M)$ is an intertwining operator between certain representations of the twisted Yangian in $(\mathbb{C}^N)^{\bigotimes n}$.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Nazarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, M. Representations of twisted Yangians associated with skew Young diagrams . Sel. math., New ser. 10, 71 (2004). https://doi.org/10.1007/s00029-004-0350-1

Download citation

  • DOI: https://doi.org/10.1007/s00029-004-0350-1

Mathematics Subject Classification (2000)

Key words.

Navigation