Skip to main content
Log in

Existence of a unique global solution, and its decay at infinity, for the modified supercritical dissipative quasi-geostrophic equation

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Our interest in this research is to prove the decay, as time tends to infinity, of a unique global solution for the supercritical case of the modified quasi-gesotrophic equation (MQG)

$$\begin{aligned} \theta _t \;\!+\, (-\Delta )^{\alpha }\,\theta \,+\, u_{\theta } \cdot \nabla \theta \;=\; 0, \quad \hbox {with } u_{\theta }\;=\;(\partial _2(-\Delta )^{\frac{\gamma -2}{2}}\theta , -\partial _1(-\Delta )^{\frac{\gamma -2}{2}}\theta ), \end{aligned}$$

in the non-homogenous Sobolev space \(H^{1+\gamma -2\alpha }(\mathbb {R}^2)\), where \(\alpha \in (0,\frac{1}{2})\) and \(\gamma \in (1,2\alpha +1)\). To this end, we need consider that the initial data for this equation are small. More precisely, we assume that \(\Vert \theta _0\Vert _{H^{1+\gamma -2\alpha }}\) is small enough in order to obtain a unique \(\theta \in C([0,\infty );H^{1+\gamma -2\alpha }(\mathbb {R}^2))\) that solves (MQG) and satisfies the following limit:

$$\begin{aligned} \lim _{t\rightarrow \infty } \Vert \theta (t)\Vert _{H^{1+\gamma -2\alpha }}=0. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Amara, M.; Benameur, J., Global solution of anisotropic quasi-geostrophic equations in Sobolev space. J. Math. Anal. Appl. 516 (2022), Paper No. 126512, 15 pp.

  2. Benameur, J.; Blel, M., Asymptotic study of the 2D-DQGE solutions. J. Funct. Spaces (2014), Art. ID 538374, 6 pp.

  3. Benameur, J.; Benhamed, M., Global existence of the two-dimensional QGE with sub-critical dissipation. J. Math. Anal. Appl. 423 (2015), 1330-1347.

    Article  MathSciNet  Google Scholar 

  4. Benameur, J.; Abdallah, S. B., Asymptotic behavior of critical dissipative quasi-geostrophic equation in Fourier space. J. Math. Anal. Appl. 497 (2021), Paper No. 124873, 30 pp.

  5. Benameur, J.; Katar, C., Asymptotic study of supercritical surface quasi-geostrophic equation in critical space. Nonlinear Anal. 224 (2022), Paper No. 113074, 12 pp.

  6. Brezis, H., Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. xiv+599 pp.

  7. Chae, D.; Constantin, P.; Wu, J., Dissipative models generalizing the 2D Navier–Stokes and surface quasi-geostrophic equations. Indiana Univ. Math. J. 61 (2012), 1997-2018.

    Article  MathSciNet  Google Scholar 

  8. Chemin, J. Y., About Navier–Stokes equations. Publication du Laboratoire Jaques-Louis Lions, Université de Paris VI (1996), R96023.

  9. Constantin, P.; Majda, A. J.; Tabak, E., Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7 (1994), 1495-1533.

    Article  ADS  MathSciNet  Google Scholar 

  10. Constantin, P.; Wu, J., Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30 (1999), 937-948.

    Article  MathSciNet  Google Scholar 

  11. Constantin, P.; Iyer, G.; Wu, J., Global regularity for a modified critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 57 (2008), 2681-2692.

    Article  MathSciNet  Google Scholar 

  12. Constantin, P.; Wu, J., Hólder continuity of solutions of supercritical dissipative hydrodynamic transport equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), 159-180.

  13. Ferreira, L. C. F.; Niche, C. J.; Planas, G., Decay of solutions to dissipative modified quasi-geostrophic equations. Proc. Amer. Math. Soc. 145 (2017), 287-301.

    Article  MathSciNet  Google Scholar 

  14. Guterres, R. H.; Melo, W. G.; Rocha, N. F.; Santos, T. S. R., Well-posedness, blow-up criteria and stability for solutions of the generalized MHD equations in Sobolev–Gevrey spaces. Acta Appl. Math. 176 (2021), 4-30.

    Article  MathSciNet  Google Scholar 

  15. Kiselev, A., Regularity and blow up for active scalars. Math. Model. Nat. Phenom. 5 (2010), 225-255.

    Article  MathSciNet  Google Scholar 

  16. Kiselev, A., Nonlocal maximum principles for active scalars. Adv. Math. 227 (2011), 1806-1826.

    Article  MathSciNet  Google Scholar 

  17. Jolly, M. S.; Kumar, A.; Martinez, V. R., On the existence, uniqueness, and smoothing of solutions to the generalized SQG equations in critical Sobolev spaces. Comm. Math. Phys. 387 (2021), 551-596.

    Article  ADS  MathSciNet  Google Scholar 

  18. May, R., Global well-posedness for a modified dissipative surface quasi-geostrophic equation in the critical Sobolev space \(H^1\). J. Differential Equations 250 (2011), 320-339.

    Article  MathSciNet  Google Scholar 

  19. Miao, C.; Xue, L., Global well-posedness for a modified critical dissipative quasi-geostrophic equation. J. Differential Equations 252 (2012), 792-818.

    Article  ADS  MathSciNet  Google Scholar 

  20. Niche, C. J.; Schonbek, M. E., Decay characterization of solutions to dissipative equations. J. Lond. Math. Soc. 91(2) (2015), 573-595.

    Article  MathSciNet  Google Scholar 

  21. Pedlosky, J., Geophysical Fluid Dynamics. Springer, New York, 2013. xiv+710 pp.

  22. Pierrehumbert, R. T.; Held, I. M.; Swanson, K. L., Spectra of local and nonlocal two-dimensional turbulence. Chaos, solitons and fractals. 4 (1994), 1111-1116.

    Article  ADS  Google Scholar 

  23. Ru, S.; Chen, J., The global well-posedness of the modified quasi-geostrophic equation in frequency spaces. Appl. Math. Lett. 43 (2015), 1-4.

    Article  MathSciNet  Google Scholar 

  24. Silvestre, L., Eventual regularization for the slightly supercritical quasi-geostrophic equation. Ann. Inst. H. Poincaré C Anal. Non Linéaire 27 (2010), 693-704.

  25. Tan, W.; Dong, B.; Chen, Z., Large-time regular solutions to the modified quasi-geostrophic equation in Besov spaces. Discrete Contin. Dyn. Syst. 39 (2019), 3749-3765.

    Article  MathSciNet  Google Scholar 

  26. Ye, Z., Long-time asymptotic behavior of the generalized two-dimensional quasi-geostrophic equation. J. Funct. Anal. 283 (2022), 109669, 49 pp.

  27. Zhang, Q., On the regularity of weak solutions for a modified dissipative quasi-geostrophic equation. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111 (2017), 89-100.

Download references

Acknowledgements

The author Wilberclay G. Melo is partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Grant 309880/2021-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilberclay G. Melo.

Ethics declarations

Code availability

Not applicable.

Conflict of interest

The author has declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This author is partially supported by CNPq Grant 309880/2021-1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, W.G. Existence of a unique global solution, and its decay at infinity, for the modified supercritical dissipative quasi-geostrophic equation. J. Evol. Equ. 24, 18 (2024). https://doi.org/10.1007/s00028-024-00947-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-024-00947-w

Keywords

Mathematics Subject Classification

Navigation