On integration by parts formula on open convex sets in Wiener spaces


In Euclidean space, it is well known that any integration by parts formula for a set of finite perimeter \(\Omega \) is expressed by the integration with respect to a measure \(P(\Omega ,\cdot )\) which is equivalent to the one-codimensional Hausdorff measure restricted to the reduced boundary of \(\Omega \). The same result has been proved in an abstract Wiener space, typically an infinite-dimensional space, where the surface measure considered is the one-codimensional spherical Hausdorff–Gauss measure \(\mathscr {S}^{\infty -1}\) restricted to the measure-theoretic boundary of \(\Omega \). In this paper, we consider an open convex set \(\Omega \) and we provide an explicit formula for the density of \(P(\Omega ,\cdot )\) with respect to \(\mathscr {S}^{\infty -1}\). In particular, the density can be written in terms of the Minkowski functional \(\mathfrak {p}\) of \(\Omega \) with respect to an inner point of \(\Omega \). As a consequence, we obtain an integration by parts formula for open convex sets in Wiener spaces.

This is a preview of subscription content, access via your institution.


  1. 1.

    Davide Addona, Giorgio Menegatti, Michele Miranda. BV functions on open domains: the Wiener case and a Fomin differentiable case. J. Commun. Pure Appl. Anal., 19(5):2679–2711, 2020.

    MathSciNet  Article  Google Scholar 

  2. 2.

    Helène Airault and Paul Malliavin. Intégration géométriquesur l’espace de Wiener. Bull. Sci. Math. (2), 112(1):3–52, 1988.

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Sergio Albeverio, Zhi-Ming Ma, and Michael Röckner. Partitions of unity in Sobolev spaces over infinite-dimensional state spaces. J. Funct. Anal., 143(1):247–268, 1997.

    MathSciNet  Article  Google Scholar 

  4. 4.

    Luigi Ambrosio and Alessio Figalli. Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces. Ann. Fac. Sci. Toulouse Math. (6), 20(2):407–438, 2011.

    MathSciNet  Article  Google Scholar 

  5. 5.

    Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.

    Google Scholar 

  6. 6.

    Luigi Ambrosio, Michele Miranda, Jr., Stefania Maniglia, and Diego Pallara. BV functions in abstract Wiener spaces. J. Funct. Anal., 258(3):785–813, 2010.

    MathSciNet  Article  Google Scholar 

  7. 7.

    Luigi Ambrosio, Michele Miranda, Jr., and Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete Contin. Dyn. Syst., 28(2):591–606, 2010.

    MathSciNet  Article  Google Scholar 

  8. 8.

    Luigi Ambrosio, Michele Miranda, Jr., and Diego Pallara. Some fine properties of \(BV\) functions on Wiener spaces. Anal. Geom. Metr. Spaces, 3:212–230, 2015.

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Vladimir I. Bogachev. Gaussian measures, volume 62 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998.

  10. 10.

    Gianluca Cappa. On the Ornstein-Uhlenbeck operator in convex sets of Banach spaces. J. Differential Equations, 260(11):2051-2071, 2016.

    MathSciNet  Article  Google Scholar 

  11. 11.

    Vicent Caselles, Alessandra Lunardi, Michele Miranda Jr, and Matteo Novaga. Perimeter of sublevel sets in infinite dimensional spaces. Adv. Calc. Var., 5(1):59–76, 2012.

    MathSciNet  Article  Google Scholar 

  12. 12.

    Pietro Celada and Alessandra Lunardi. Traces of Sobolev functions on regular surfaces in infinite dimensions. J. Funct. Anal., 266(4):1948–1987, 2014.

    MathSciNet  Article  Google Scholar 

  13. 13.

    Ennio De Giorgi. Definizione ed espressione analitica del perimetro di un insieme. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8), 14:390–393, 1953.

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Denis Feyel and Arnaud de La Pradelle. Hausdorff measures on the Wiener space. Potential Anal., 1(2):177–189, 1992.

    MathSciNet  Article  Google Scholar 

  15. 15.

    Masatoshi Fukushima. \(BV\) functions and distorted Ornstein Uhlenbeck processes over the abstract Wiener space. J. Funct. Anal., 174(1):227–249, 2000.

    MathSciNet  Article  Google Scholar 

  16. 16.

    Masatoshi Fukushima and Masanori Hino. On the space of BV functions and a related stochastic calculus in infinite dimensions. J. Funct. Anal., 183(1):245–268, 2001.

    MathSciNet  Article  Google Scholar 

  17. 17.

    Masanori Hino. Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener space. J. Funct. Anal., 258(5):1656–1681, 2010.

    MathSciNet  Article  Google Scholar 

  18. 18.

    Alessandra Lunardi, Michele Miranda, Jr., and Diego Pallara. \(BV\) functions on convex domains in Wiener spaces. Potential Anal., 43(1):23–48, 2015.

    MathSciNet  Article  Google Scholar 

  19. 19.

    Robert R. Phelps. Convex functions, monotone operators and differentiability, volume 1364 of Lecture Notes in Mathematics. Springer, Berlin, second edition, 1993.

  20. 20.

    David Preiss. Gaussian measures and the density theorem. Comment. Math. Univ. Carolin., 22(1):181–193, 1981.

    MathSciNet  MATH  Google Scholar 

Download references


Davide Addona has been partially supported by the INdAM-GNAMPA Project Equazioni e sistemi di equazioni di Kolmogorov in dimensione finita e non (2017).

Author information



Corresponding author

Correspondence to Davide Addona.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Addona, D., Menegatti, G. & Miranda, M. On integration by parts formula on open convex sets in Wiener spaces. J. Evol. Equ. (2021). https://doi.org/10.1007/s00028-020-00663-1

Download citation


  • Infinite-dimensional analysis
  • Abstract Wiener spaces
  • Integration by parts formula
  • Convex analysis
  • Geometric measure theory

Mathematics Subject Classification

  • Primary: 28C20
  • Secondary: 46G05
  • 46N10