Vanishing relaxation time dynamics of the Jordan Moore-Gibson-Thompson equation arising in nonlinear acoustics


The (third order in time) JMGT equation [Jordan (J Acoust Soc Am 124(4):2491–2491, 2008) and Cattaneo (C Sulla conduzione del calore Atti Sem Mat Fis Univ Modena 3:83–101, 1948)] is a nonlinear (quasi-linear) partial differential equation (PDE) model introduced to describe a nonlinear propagation of sound in an acoustic medium. The important feature is that the model avoids the infinite speed of propagation paradox associated with a classical second-order in time equation referred to as Westervelt equation. Replacing Fourier’s law by Maxwell–Cattaneo’s law gives rise to the third-order in time derivative scaled by a small parameter \(\tau >0\), the latter represents the thermal relaxation time parameter and is intrinsic to the medium where the dynamics occur. In this paper, we provide an asymptotic analysis of the third-order model when \(\tau \rightarrow 0 \). It is shown that the corresponding solutions converge in a strong topology of the phase space to a limit which is the solution of Westervelt equation. In addition, rate of convergence is provided for solutions displaying higher-order regularity. This addresses an open question raised in [20], where a related JMGT equation has been studied and weak star convergence of the solutions when \(\tau \rightarrow 0\) has been established. Thus, our main contribution is showing strong convergence on infinite time horizon, along with related rates of convergence valid on a finite time horizon. The key to unlocking the difficulty owns to a tight control and propagation of the “smallness” of the initial data in carrying the estimates at three different topological levels. The rate of convergence allows one then to estimate the relaxation time needed for the signal to reach the target. The interest in studying this type of problems is motivated by a large array of applications arising in engineering and medical sciences.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bongarti, M., Charoenphon, S., and Lasiecka, I. Singular thermal relaxation limit for the Moore-Gibson-Thompson equation arising in propagation of acoustic waves. Semigroups of Operators: Theory and Applications SOTA-2018 (2019), 147–182.

  2. 2.

    Bucci, F., and Eller, M. The Cauchy–Dirichlet problem for the Moore–Gibson–thompson equation. arXiv preprintarXiv:2004.11167 (2020).

  3. 3.

    Bucci, F., and Pandolfi, L. On the regularity of solutions to the Moore–Gibson-Thompson equation: a perspective via wave equations with memory. Journal of Evolution Equations 3 (2019) 1–31.

    MATH  Google Scholar 

  4. 4.

    Cattaneo, C. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3 (1948), 83–101.

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Cattaneo, C. A form of heat–conduction equations which eliminates the paradox of instantaneous propagation. Comptes Rendus 247 (1958), 431.

    MATH  Google Scholar 

  6. 6.

    Christov, C., and Jordan, P. Heat conduction paradox involving second–sound propagation in moving media. Physical Review Letters 94(15) (2005), 154301.

    Article  Google Scholar 

  7. 7.

    Crighton, D. G. Model equations of nonlinear acoustics. Annual Review of Fluid Mechanics 11(1) (1979), 11–33.

    Article  Google Scholar 

  8. 8.

    Dell’Oro, F., Lasiecka, I., and Pata, V. The Moore–Gibson–Thompson equation with memory in the critical case. Journal of Differential Equations 261(7) (2016), 4188–4222.

    MathSciNet  Article  Google Scholar 

  9. 9.

    Dell’Oro, F., and Pata, V. On the Moore–Gibson–Thompson equation and its relation to linear viscoelasticity. Applied Mathematics and Optimization 261(7) (2016), 4188–4222.

    MATH  Google Scholar 

  10. 10.

    Denk, R., Hieber, M., and Pruss, J. R–boundedness, Fourier multipliers and problems of elliptic and parabolic type. Memoires of American Mathematical Society 788 (2003).

  11. 11.

    Ekoue, F., d’Halloy, A. F., Gigon, D., Plantamp, G., and Zajdman, E. Maxwell–Cattaneo regularization of heat equation. World Academy of Science, Engineering and Technology 7 (2013), 05–23.

    Google Scholar 

  12. 12.

    Fattorini, H. O. The Cauchy Problem. Addison Wesley, Boston 1983.

    Google Scholar 

  13. 13.

    Hamilton, M. F., Blackstock, D. T., et al. Nonlinear acoustics. Academic Press, Cambridge 1997.

    Google Scholar 

  14. 14.

    Jordan, P. M. Nonlinear acoustic phenomena in viscous thermally relaxing fluids: Shock bifurcation and the emergence of diffusive solitons. The Journal of the Acoustical Society of America 124, 4 (2008), 2491–2491.

    Article  Google Scholar 

  15. 15.

    Jordan, P. M. Second-sound phenomena in inviscid, thermally relaxing gases. Discrete & Continuous Dynamical Systems-B 19(7) (2014), 2189.

    MathSciNet  Article  Google Scholar 

  16. 16.

    Kaltenbacher, B. Mathematics of nonlinear acoustics. Evolution Equations and Control Theory 4(4) (2015), 447–491.

    MathSciNet  Article  Google Scholar 

  17. 17.

    Kaltenbacher, B., and Lasiecka, I. Global existence and exponential decay rates for the Westervelt’s equation. Discrete and Continuous Dynamical Systems–Series S 2(3) (2009), 503–525.

    MathSciNet  Article  Google Scholar 

  18. 18.

    Kaltenbacher, B., Lasiecka, I., and Marchand, R. Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound. Control and Cybernetics 40 (2011), 971–988.

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Kaltenbacher, B., Lasiecka, I., and Pospieszalska, M. K. Well-posedness and exponential decay of the energy in the nonlinear Jordan–Moore–Gibson–Thompson equation arising in high intensity ultrasound. Mathematical Models and Methods in Applied Sciences, 22(11) (2012), 1250035.

    MathSciNet  Article  Google Scholar 

  20. 20.

    Kaltenbacher, B., and Nikolic, V. On the Jordan–Moore–Gibson–Thompson equation: well-posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time. Math. Models Methods Appl. Sci. 29 (2019), 2523–2556.

    MathSciNet  Article  Google Scholar 

  21. 21.

    Kaltenbacher, B., and NikoliĆ, V. Vanishing relaxation time limit of the Jordan–Moore–Gibson–Thompson wave equation with Neumann and absorbing boundary conditions. Pure and Applied Functional Analysis 5 (2020), 1–26.

    MathSciNet  Google Scholar 

  22. 22.

    Kato, T. Perturbation Theory for Linear Operators. Springer, Berlin, 1976.

    Google Scholar 

  23. 23.

    Lasiecka, I., and Ong, J. Global solvability and uniform decays of solutions to quaslinear hyperbolic equations with nonlinear boundary conditions. Communications on PDE 24(11-12) (1999), 2069–2107.

    Article  Google Scholar 

  24. 24.

    Lasiecka, I., Tataru, D., et al. Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differential and integral Equations 6(3) (1993), 507–533.

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Lunardi, A. Analytic Semigroups and Optimal regularity in parabolic problems. Birkhäuser, Basel 1995.

    Google Scholar 

  26. 26.

    Marchand, R., McDevitt, T., and Triggiani, R. An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Mathematical Methods in the Applied Sciences, 35(15) (2012), 1896–1929.

    MathSciNet  Article  Google Scholar 

  27. 27.

    Meyer, S., and Wilke, M. Optimal regularity and long-time behavior of solutions for the Westervelt equations. Applied Mathematics and Optimization 64 (2011), 257–271.

    MathSciNet  Article  Google Scholar 

  28. 28.

    Pellicer, M., and Said-Houari, B. Wellposedness and decay rates for the Cauchy problem of the Moore–Gibson–Thompson equation arising in high intensity ultrasound. Applied Mathematics & Optimization 80(2) (2017), 447–478.

    MathSciNet  Article  Google Scholar 

  29. 29.

    Straughan, B. Heat waves. Springer, Berlin 2011.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Irena Lasiecka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Theorem 1.4

A Proof of Theorem 1.4

As a starting point, we are going to use (see [1, 18, 19]) that given \(f \in L^1(0,T; \mathcal {D}(A^{1/2}))\) and \(\alpha > 0\), the linear problem

$$\begin{aligned} \tau u_{ttt} + \alpha u_{tt} + c^2A u + bA u_t = f, \end{aligned}$$

is well posed—in the variable \(U = (u,u_t,u_{tt})\)—and exponentially stable (with rates independent of \(\tau \) for \(\tau \) small) for initial data in \(\mathbb {H}_i\) (\(i = 0,1,2\)). This is to say that, denoting by \(t \mapsto S(t)\) the semigroup generated by the evolution (A.1), there exist constants \(\omega _i, M_i >0\), (\(i = 0,1,2\)) such that

$$\begin{aligned} \Vert U(t)\Vert _{\mathbb {H}_i^\tau } = \Vert S(t)U_0\Vert _{\mathbb {H}_i^\tau } \leqslant M_ie^{-\omega _i t} \Vert U_0\Vert _{\mathbb {H}_i^\tau }. \end{aligned}$$

Define X as the set

$$\begin{aligned} X = \left\{ W = (w,w_t,w_{tt})^\top \in C(0,T; \mathbb {H}_2); \sup _{t \in [0,T]} \Vert W(t)\Vert _{\mathbb {H}_2^\tau }< \infty \ \text{ and } \ \sup _{t \in [0,T]}\Vert W(t)\Vert _{\mathbb {H}_0^\tau } < \eta \right\} \end{aligned}$$

(\(\eta > 0\) will be taken to be sufficiently small later) and equip it with the norm

$$\begin{aligned} \Vert W\Vert _{X}^2 := \sup _{t \in [0,T]} \Vert W(t)\Vert _{\mathbb {H}_2^\tau }^2. \end{aligned}$$

Recalling the interpolation inequalities

$$\begin{aligned} \Vert g\Vert _{L^\infty } \leqslant C\Vert g\Vert _{\mathcal {D}(A^{1/2})}^{1/2}\Vert g\Vert _{\mathcal {D}(A)}^{1/2}, \ g \in \mathcal {D}(A) \end{aligned}$$


$$\begin{aligned} \Vert g\Vert _{L^4} \leqslant C\Vert g\Vert _2^{1/4}\Vert g\Vert _{\mathcal {D}(A^{1/2})}^{3/4} \ \ g \in \mathcal {D}(A^{1/2}) \end{aligned}$$

we observe that if \(W = (w,w_t,w_{tt}) \in X\), it follows that \({w},{w}_t \in \mathcal {D}(A) \hookrightarrow L^\infty (\Omega )\) and \(w_{tt} \in \mathcal {D}(A^{1/2}) \hookrightarrow L^4(\Omega )\) (\(n = 2,3,4\)), for each \(t \in [0,T]\), and therefore \(f({w}) := 2k({w}_t^2 + {w}{w}_{tt}) \in C(0,T;\mathcal {D}(A^{1/2})).\) This means that for each \(W \in X\), f(w) qualifies to be the right-hand side of (A.1), and therefore, it makes well defined the application \(\Upsilon \) that associates each \(W \in X\) to the solution \((u,u_t,u_{tt})^\top = U := \Upsilon (W) \in C(0,T; \mathbb {H}_2)\) for (A.1) with initial condition \(U_0 = (u(0),u_t(0),u_{tt}(0)) ^\top \in \mathbb {H}_2\). Moreover, the solution U is represented by the variation of parameters formula, i.e., for each \(t \in [0,T],\)

$$\begin{aligned} U(t) = \Upsilon (W)(t) = S(t)U_0 + \int _0^t S(t-\sigma )\underbrace{(0,0,\tau ^{-1}f(w(t)))^\top }_{:=F_\tau (W)(t)} d\sigma . \end{aligned}$$

In addition, \(\Upsilon \) maps X into itself. In fact, for each \(t \in [0,T]\), uniform (in \(\tau \)) exponential stability implies that

$$\begin{aligned} \Vert \Upsilon (W)(t)\Vert _{\mathbb {H}_2^\tau }&\leqslant \Vert S(t)U_0\Vert _{\mathbb {H}_2^\tau } + \left\| \int _0^tS(t-\sigma )F_\tau (W)(\sigma )d\sigma \right\| _{\mathbb {H}_2^\tau } \nonumber \\&\leqslant M_2\Vert U_0\Vert _{\mathbb {H}_2^\tau } + \int _0^t M_2e^{-\omega _2 (t-\sigma )} \Vert F_\tau (W)(\sigma )\Vert _{\mathbb {H}_2^\tau }d\sigma \nonumber \\&\leqslant M_2\left( \Vert U_0\Vert _{\mathbb {H}_2^\tau } + \dfrac{C_{\omega }}{\tau }\sup _{t \in [0,T]} \Vert f(w)(t)\Vert _{\mathcal {D}(A^{1/2})}\right) . \end{aligned}$$

and again for each \(t \in [0,T]\)—mostly omitted on the computations below—we estimate

$$\begin{aligned}&(2k)^{-1}\Vert f({w})\Vert _{\mathcal {D}(A^{1/2})}\nonumber \\&\quad \sim \Vert \nabla ({w}_t^2 + {w} {w}_{tt})\Vert _2 \nonumber \\&\quad = \Vert 2{w}_t \nabla {w}_t + {w} \nabla {w}_{tt} + {w}_{tt} \nabla {w}\Vert _2 \nonumber \\&\quad \leqslant 2\Vert {w}_t\Vert _{L^\infty } \Vert \nabla {w}_t\Vert _2 + \Vert {w}\Vert _{L^\infty }\Vert \nabla {w}_{tt}\Vert _2 + \Vert {w}_{tt}\Vert _{L^4}\Vert \nabla {w}\Vert _{L^4} \nonumber \\&\quad \leqslant C \left[ \Vert {w}_t\Vert _{\mathcal {D}(A^{1/2})}^{1/2}\Vert {w}_t\Vert _{\mathcal {D}(A)}^{1/2}\Vert \nabla {w}_t\Vert _2 + \Vert {w}\Vert _{\mathcal {D}(A^{1/2})}^{1/2}\Vert {w}\Vert _{\mathcal {D}(A)}^{1/2}\Vert \nabla {w}_{tt}\Vert _2\right] \nonumber \\&\qquad + C\left[ \Vert {w}_{tt}\Vert _2^{1/4}\Vert {w}_{tt}\Vert _{\mathcal {D}(A^{1/2})}^{3/4}\Vert \nabla {w}\Vert _2^{1/4}\Vert \nabla {w}\Vert _{\mathcal {D}(A^{1/2})}^{3/4}\right] \nonumber \\&\quad \leqslant C\Vert W(t)\Vert _{\mathbb {H}_0^\tau }^{1/2}\Vert W(t)\Vert _{\mathbb {H}_2^\tau }^{3/2} \leqslant \left[ \sup _{t \in [0,T]}\Vert W(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{3/2}\eta ^{1/2}, \end{aligned}$$

and then, back in (A.6) we conclude that

$$\begin{aligned} \sup _{t \in [0,T]}\Vert \Upsilon (W)(t)\Vert _{\mathbb {H}_2^\tau } \leqslant M_2\left( \Vert U_0\Vert _{\mathbb {H}_2^\tau } + \dfrac{2k C_{\omega }}{\tau }\left[ \sup _{t \in [0,T]}\Vert W(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{3/2}\eta ^{1/2}\right) < \infty .\nonumber \\ \end{aligned}$$

Similarly, for \(\mathbb {H}_0^\tau \), for each \(t \in [0,T]\) we have have

$$\begin{aligned} \Vert \Upsilon (W)(t)\Vert _{\mathbb {H}_0^\tau } \leqslant M_1\left( \Vert U_0\Vert _{\mathbb {H}_0^\tau } + \dfrac{C_{\omega }}{\tau }\sup _{t \in [0,T]}\Vert f(w)(t)\Vert _2\right) . \end{aligned}$$

Moreover, for each \(t \in [0,T]\)—again mostly omitted—it holds that

$$\begin{aligned}&(2k)^{-1}\Vert f(w)(t)\Vert _2 \\&\quad = \Vert w_t^2 + uu_{tt}\Vert _2 \\&\quad \leqslant \Vert w_t\Vert _{L^4}^2 + \Vert u\Vert _{L^\infty }\Vert u_{tt}\Vert _2 \\&\quad \leqslant C\left[ \Vert A^{1/2}w_t\Vert _2^2 + \Vert A^{1/2}u\Vert _2^{1/2}\Vert Au\Vert _2^{1/2}\Vert u_{tt}\Vert _2\right] \\&\quad \leqslant C\left\{ \left[ \sup _{t \in [0,T]}\Vert W(t)\Vert _{\mathbb {H}_0^\tau }\right] ^2 + \left[ \sup _{t \in [0,T]}\Vert W(t)\Vert _{\mathbb {H}_0^\tau }\right] ^{3/2}\left[ \sup _{t \in [0,T]}\Vert W(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{1/2}\right\} \\&\quad \leqslant C\left\{ \eta ^2 + \eta ^{3/2}\left[ \sup _{t \in [0,T]}\Vert W(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{1/2}\right\} , \end{aligned}$$

then, taking \(\eta = \eta (\tau )\) small enough so that

$$\begin{aligned} \dfrac{2kC}{\tau }\left[ \eta ^2 + \eta ^{3/2}\left( \sup _{t \in [0,T]}\Vert W(t)\Vert _{\mathbb {H}_2^\tau }\right) ^{1/2}\right] < \dfrac{\eta }{2M1} \end{aligned}$$

and, as a consequence, \(\rho = \rho (\tau )\) small enough such that \(\rho < \dfrac{\eta }{2M1}\), we can return to (A.9) to conclude that if \(\Vert U_0\Vert _{\mathbb {H}_0^\tau } < \rho \) we have

$$\begin{aligned} \sup _{t \in [0,T]}\Vert \Upsilon (W)(t)\Vert _{\mathbb {H}_0^\tau } \leqslant M_1\left\{ \rho + \dfrac{2kC_{\omega }}{\tau }\left[ \eta ^2 + \eta ^{3/2}\left( \sup _{t \in [0,T]}\Vert W(t)\Vert _{\mathbb {H}_2^\tau }\right) ^{1/2}\right] \right\} < \eta ,\nonumber \\ \end{aligned}$$

which completes the proof of invariance.

Next, we prove that \(\Upsilon \) is a contraction if \(\eta \) is sufficiently small. For this, let \(W_1 = (w_1,{w_1}_t,{w_1}_{tt})^\top , W_2 = (w_2, {w_2}_{t},{w_2}_{tt})^\top \in X\) and notice that

$$\begin{aligned}&\Vert \Upsilon (W_1) - \Upsilon (W_2)\Vert _{X} =\sup _{t \in [0,T]}\left\| \int _0^t S(t-\sigma ) \left[ F_\tau (W_1)(\sigma )-F_\tau (W_2)(\sigma )\right] d\sigma \right\| _{\mathbb {H}_2^\tau }\nonumber \\&\quad \leqslant \dfrac{C_{\omega }}{\tau } \sup _{t \in [0,T]} \left\| f(w_1)(t)-f(w_2)(t)\right\| _{\mathcal {D}(A^{1/2})}. \end{aligned}$$

Next, observe that for each \(t \in [0,T]\)—mostly omitted on the computations below—we have

$$\begin{aligned}&(2k)^{-1}\Vert f(w_1)(t) -f(w_2)(t)\Vert _{\mathcal {D}(A^{1/2})}\nonumber \\&\quad =\Vert ({w_1}_t+{w_2}_t)({w_1}_t - {w_2}_{t}) + ({w_1}-{w_2}){w_1}_{tt} + ({w_1}_{tt}-{w_2}_{tt}){w_2}\Vert _{\mathcal {D}(A^{1/2})} \nonumber \\&\quad \leqslant Q_1(t) + Q_2(t) + Q_3(t), \end{aligned}$$


$$\begin{aligned} Q_1(t)= & {} \left\| ({w_1}_t+{w_2}_t)({w_1}_t-{w_2}_t)\right\| _{\mathcal {D}(A^{1/2})}, \ \ Q_2(t) = \Vert ({w_1}-{w_2}){w_1}_{tt}\Vert _{\mathcal {D}(A^{1/2})}, \\ Q_3(t)= & {} \Vert ({w_1}_{tt}-{w_2}_{tt}){w_2}\Vert _{\mathcal {D}(A^{1/2})} \end{aligned}$$

and then, we estimate these three quantities (for each \(t \in [0,T]\)):

$$\begin{aligned}&Q_1(t) \\&\quad = \left\| ({w_1}_t+{w_2}_t)({w_1}_t-{w_2}_t)\right\| _{\mathcal {D}(A^{1/2})} \\&\sim \left\| \nabla \left[ ({w_1}_t+{w_2}_t)({w_1}_t-{w_2}_t)\right] \right\| _{2} \\&\quad = \left\| ({w_1}_t+{w_2}_t)\nabla ({w_1}_t-{w_2}_t)\right\| _{2}+\left\| \nabla \left[ ({w_1}_t+{w_1}_t)\right] ({w_1}_t-{w_2}_t)\right\| _{2} \\&\quad \leqslant \Vert {w_1}_t +{w_2}_t\Vert _{L^\infty }\Vert {w_1}_t - {w_2}_t\Vert _{\mathcal {D}(A^{1/2})} + \Vert \nabla ({w_1}_t + {w_2}_t)\Vert _{L^4}\Vert {w_1}_t - {w_2}_t\Vert _{L^4} \\&\quad \leqslant C\Vert {w_1}_t +{w_2}_t\Vert _{\mathcal {D}(A^{1/2})}^{1/2}\Vert {w_1}_t +{w_2}_t\Vert _{\mathcal {D}(A)}^{1/2}\Vert {w_1}_t - {w_2}_t\Vert _{\mathcal {D}(A^{1/2})} \\&\qquad + C\Vert \nabla ({w_1}_t + {w_2}_t)\Vert _{2}^{1/4}\Vert \nabla ({w_1}_t + {w_2}_t)\Vert _{\mathcal {D}(A^{1/2})}^{3/4}\Vert {w_1}_t - {w_2}_t\Vert _{2}^{1/4}\Vert {w_1}_t - {w_2}_t\Vert _{\mathcal {D}(A^{1/2})}^{3/4} \\&\quad \leqslant C\left[ \Vert (W_1+W_2)(t)\Vert _{\mathbb {H}_0^\tau }\right] ^{1/2}\left[ \Vert (W_1+W_2)(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{1/2}\Vert ({W_1}-{W_2})(t)\Vert _{\mathbb {H}_2^\tau } \\&\qquad +C\left[ \Vert (W_1+W_2)(t)\Vert _{\mathbb {H}_0^\tau }\right] ^{1/4}\left[ \Vert (W_1+W_2)(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{3/4} \Vert ({W_1}-{W_2})(t)\Vert _{\mathbb {H}_2^\tau } \\&\quad \leqslant C\left[ \sup _{t \in [0,T]}\Vert (W_1+W_2)(t)\Vert _{\mathbb {H}_0^\tau }\right] ^{1/2}\left[ \sup _{t \in [0,T]}\Vert (W_1+W_2)(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{1/2}\sup _{t \in [0,T]}\Vert ({W_1}-{W_2})(t)\Vert _{\mathbb {H}_2^\tau } \\&\qquad +C\left[ \sup _{t \in [0,T]}\Vert (W_1+W_2)(t)\Vert _{\mathbb {H}_0^\tau }\right] ^{1/4}\left[ \sup _{t \in [0,T]}\Vert (W_1+W_2)(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{3/4} \sup _{t \in [0,T]}\Vert ({W_1}-{W_2})(t)\Vert _{\mathbb {H}_2^\tau } \\&\quad \leqslant C\left\{ \eta ^{1/2}\left[ \sup _{t \in [0,T]}\Vert (W_1+W_2)(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{1/2} + \eta ^{1/4}\left[ \sup _{t \in [0,T]}\Vert (W_1+W_2)(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{3/4}\right\} \Vert W_1-W_2\Vert _X \\&\quad \leqslant C\eta ^{1/4}\Vert W_1 - W_2\Vert _X, \end{aligned}$$

where C is a constant that does not depend on time.

$$\begin{aligned}&Q_2(t) =\Vert ({w_1}-{w_2}){w_1}_{tt}\Vert _{\mathcal {D}(A^{1/2})} \\&\quad \sim \Vert {w_1}_{tt}\nabla ({w_1}-{w_2}) + ({w_1} - {w_2})\nabla {w_1}_{tt}\Vert _2 \\&\quad \leqslant C\Vert {w_1}_{tt}\Vert _2^{1/4}\Vert {w_1}_{tt}\Vert _{\mathcal {D}(A^{1/2})}^{3/4}\Vert \nabla ({w_1}-{w_2})\Vert _{2}^{1/4}\Vert \nabla ({w_1}-{w_2})\Vert _{\mathcal {D}(A^{1/2})}^{3/4} \\&\qquad + C\Vert {w_1}-{w_2}\Vert _{\mathcal {D}(A^{1/2})}^{1/2}\Vert {w_1}-{w_2}\Vert _{\mathcal {D}(A)}^{1/2}\Vert \nabla {w_1}_{tt}\Vert _2 \\&\quad \leqslant \dfrac{C}{\tau }[\Vert W_1(t)\Vert _{\mathbb {H}_0^\tau }]^{1/4}[\Vert W_1(t)\Vert _{\mathbb {H}_2^\tau }]^{3/4}\Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_2^\tau }\\&\qquad +\dfrac{C}{\tau }[\Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_0^\tau }]^{1/2}\Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_2^\tau } \\&\qquad + \dfrac{C}{\tau } [\Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_0^\tau }]^{1/2}[\Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_2^\tau }] \Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_2^\tau } \\&\quad \leqslant \dfrac{C}{\tau }\left[ \sup _{t \in [0,T]}\Vert W_1(t)\Vert _{\mathbb {H}_0^\tau }\right] ^{1/4}\left[ \sup _{t \in [0,T]}\Vert W_1(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{3/4}\sup _{t \in [0,T]}\Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_2^\tau } \\&\qquad + \dfrac{C}{\tau }\left[ \sup _{t \in [0,T]}\Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_0^\tau }\right] ^{1/2}\sup _{t \in [0,T]}\Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_2^\tau } \\&\qquad + \dfrac{C}{\tau }\left[ \sup _{t \in [0,T]}\Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_0^\tau }\right] ^{1/2}\\&\quad \left[ \sup _{t \in [0,T]}\Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_2^\tau }\right] \sup _{t \in [0,T]}\Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_2^\tau } \\&\quad \leqslant \dfrac{C}{\tau }\left\{ \eta ^{1/4}\left[ \sup _{t \in [0,T]}\Vert W_1(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{3/4}+ \eta ^{1/2} + \eta ^{1/2}\left[ \sup _{t \in [0,T]}\Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_2^\tau }\right] \right\} \Vert W_1-W_2\Vert _X \\&\quad \leqslant \dfrac{C}{\tau }\eta ^{1/4}\Vert W_1 - W_2\Vert _X, \end{aligned}$$

where C is a constant that does not depend on time.

$$\begin{aligned}&Q_3(t)\\&\quad = \Vert ({w_1}_{tt}-{w_2}_{tt}){w_2}\Vert _{\mathcal {D}(A^{1/2})} \\&\quad \sim \Vert {w_2}\nabla ({w_1}_{tt}-{w_2}_{tt}) + ({w_1}_{tt} - {w_2}_{tt})\nabla {w_2}\Vert _2 \\&\quad \leqslant C\Vert {w_1}_{tt}-{w_2}_{tt}\Vert _2^{1/4}\Vert {w_1}_{tt}-{w_2}_{tt}\Vert _{\mathcal {D}(A^{1/2})}^{3/4}\Vert \nabla {w_2}\Vert _{2}^{1/4}\Vert \nabla {w_2}\Vert _{\mathcal {D}(A^{1/2})}^{3/4} \\&\qquad + C\Vert {w_2}\Vert _{\mathcal {D}(A^{1/2})}^{1/2}\Vert {w_2}\Vert _{\mathcal {D}(A)}^{1/2}\Vert \nabla ({w_1}_{tt}-{w_2}_{tt})\Vert _2 \\&\quad \leqslant \dfrac{C}{\tau }\Big \{[\Vert W_1\Vert _{\mathbb {H}_0^\tau }]^{1/4}[\Vert W_1(t)\Vert _{\mathbb {H}_2^\tau }]^{3/4}\\&\quad + [\Vert (W_1-W_2)(t)\Vert _{\mathbb {H}_0^\tau }]^{1/2}[\Vert (W_1+W_2)(t)\Vert _{\mathbb {H}_2^\tau }]^{1/2}\Big \} \Vert ({W_1}-{W_2})(t)\Vert _{\mathbb {H}_2^\tau } \\&\quad \leqslant \dfrac{C}{\tau }\left\{ \eta ^{1/4}\left[ \sup _{t \in [0,T]}\Vert W_1(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{3/4} + \eta ^{1/2}\left[ \sup _{t \in [0,T]}\Vert (W_1+W_2)(t)\Vert _{\mathbb {H}_2^\tau }\right] ^{1/2}\right\} \\&\quad \leqslant \dfrac{C}{\tau }\eta ^{1/4}\Vert W_1 - W_2\Vert _X, \end{aligned}$$

where C is a constant that does not depend on time.

Therefore, back in (A.11), we have

$$\begin{aligned}&\Vert \Upsilon (W_1) - \Upsilon (W_2)\Vert _{X} \nonumber \\&\quad \leqslant \dfrac{C_{\omega }}{\tau } \sup _{t \in [0,T]} \left\| f(w_1)(t)-f(w_2)(t)\right\| _{\mathcal {D}(A^{1/2})} \nonumber \\&\quad \leqslant \dfrac{2kC_{\omega }}{\tau }\sup _{t \in [0,T]}\left[ Q_1(t) + Q_2(t) + Q_3(t)\right] \leqslant \dfrac{2kTC}{\tau ^2}\eta ^{1/4}\Vert W_1-W_2\Vert _X. \end{aligned}$$

which means that \(\Upsilon \) is a contraction as long as we take a—possibly smaller—\(\eta =\eta (\tau )\) such that \(\eta < \left( \dfrac{\tau ^2}{2kC_{\omega }}\right) ^{16}\). This completes the proof of local well-posedness.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bongarti, M., Charoenphon, S. & Lasiecka, I. Vanishing relaxation time dynamics of the Jordan Moore-Gibson-Thompson equation arising in nonlinear acoustics. J. Evol. Equ. (2021).

Download citation


  • Jordan-Moore-Gibson-Thompson equation
  • Third-order evolutions
  • Strong convergence of nonlinear flows
  • Rate of convergence
  • Uniform exponential decays
  • Acoustic waves