From Jean Leray to the millennium problem: the Navier–Stokes equations

Abstract

One of the Millennium problems of Clay Mathematics Institute from 2000 concerns the regularity of solutions to the instationary Navier–Stokes equations in three dimensions. For an official problem description, we refer to an article by Charles Fefferman (Existence and smoothness of the Navier–Stokes equation. http://www.claymath.org/sites/default/files/navierstokes.pdf) on the whole space problem as well as the periodic setting in \(\mathbb {R}^3\). In this article, we will introduce the Navier–Stokes equations, describe their main mathematical problems, discuss several of the most important results, starting from 1934 with the seminal work by Jean Leray, and proceeding to very recent results on non-uniqueness and examples involving singularities. On this tour de force we will explain the open problem of regularity.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. Beirão da Veiga: A new regularity class for the Navier–Stokes equations in \({\mathbb{R}}^n\). Chinese Ann. Math. Ser. B16, 407–412 (1995)

  2. 2.

    H. Beirão da Veiga and L. Berselli: On the regularizing effect of the vorticity direction in incompressible viscous flows. Differential Integral Equations 15, 345–356 (2002)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    J. Bourgain and N. Pavlović: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 255, 2233–2247 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    T. Buckmaster and V. Vicol: Nonuniqueness of weak solutions to the Navier–Stokes equation. Ann. of Math. 189, 101–144 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    T. Buckmaster, M. Colombo and V. Vicol: Wild solutions of the Navier–Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1. arXiv:1809.00600 (2018)

  6. 6.

    T. Buckmaster, C. De Lellis, L. Székelyhidi Jr., and V. Vicol: Onsager’s conjecture for admissible weak solutions. Comm. Pure Appl. Math. 72, 229–274 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    L. Caffarelli, R. Kohn, and L. Nirenberg: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure Appl. Math. 35, 771–831 (1982)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    M. Cannone: Harmonic analysis tools for solving the incompressible Navier–Stokes equations. In: S.J. Friedlander and D. Serre (eds.), Handbook of Mathematical Fluid Dynamics, vol. III, North-Holland, Amsterdam 2004, 161–244

    Google Scholar 

  9. 9.

    Chongsheng Cao and E.S. Titi: Global regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor. Arch. Ration. Mech. Anal. 202, 919–932 (2011)

  10. 10.

    J.-Y. Chemin and I. Gallagher: Wellposedness and stability results for the Navier–Stokes equations in \({\mathbb{R}}^3\). Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599–624

  11. 11.

    J.-Y. Chemin, I. Gallagher, and M. Paicu: Global regularity for some classes of large solutions to the Navier–Stokes equations. Ann. of Math. 173, 983–1012 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    A. Cheskidov and R. Shvydkoy: Ill-posedness of the basic equations of fluid mechanics in Besov spaces. Proc. Amer. Math. Soc 138, 1059–1067 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    A. Cheskidov and R. Shvydkoy: The regularity of weak solutions of the 3D Navier–Stokes equations in \(B^{-1}_{\infty ,\infty }\). Arch. Ration. Mech. Anal. 195, 159–169 (2010)

  14. 14.

    Chiun-Chuan Chen, R.M. Strain, H.-T. Yau, and T.-P. Tsai: Lower bound on the blow-up rate of the axisymmetric Navier–Stokes equations. Int. Math. Res. Not. IMRN 2008, no. 9, Art. ID rnn016

  15. 15.

    P. Constantin and Ch. Fefferman: Direction of vorticity and the problem of global regularity for the Navier–Stokes equations. Indiana Univ. Math. J. 42, 775–789 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    C. De Lellis and L. Székelyhidi Jr.: The Euler equations as a differential inclusion. Ann. of Math. 170, 1417–1436 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    C. De Lellis and L. Székelyhidi Jr.: Dissipative continuous Euler flows. Invent. Math. 193, 377–407 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    L. Escauriaza, G. Seregin, and V. Šverák: \(L_{3,\infty }\)-solutions of the Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk 58, 3-44 (2003) (Russian), Russian Math. Surveys 58, 211–250 (2003)

  19. 19.

    R. Farwig, H. Kozono, and H. Sohr: An \(L^q\)-approach to Stokes and Navier–Stokes in general domains. Acta Math. 195, 21–53 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    R. Farwig, H. Kozono, and H. Sohr: Stokes Semigroups, Strong, Weak, and Very Weak Solutions for General Domains. In: Y. Giga and A. Novotný (eds.), Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer Nature, Cham 2018, 419–459

    Google Scholar 

  21. 21.

    R. Farwig and H. Sohr: Optimal initial value conditions for the existence of local strong solutions of the Navier–Stokes equations. Math. Ann. 345, 631–642 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    R. Farwig, H. Sohr, and W. Varnhorn: On optimal initial value conditions for local strong solutions of the Navier–Stokes equations, Ann. Univ. Ferrara Sez. VII Sci. Mat. 55, 89–110 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    G.P. Galdi: An Introduction to the Navier–Stokes initial-boundary value problem. Fundamental directions in mathematical fluid mechanics, 1-70, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2000.

  24. 24.

    G.P. Galdi: On the energy equality for distributional solutions to Navier–Stokes equations. Proc. Amer. Math. Soc. 147, 785–792 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    G.P. Galdi: On the relation between very weak and Leray–Hopf solutions to Navier–Stokes equations. Proc. Amer. Math. Soc. 147, 5349–5359 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    I. Gallagher: Critical function spaces for the wellposedness of the Navier–Stokes initial value problem. In: Y. Giga and A. Novotný (eds.), Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer Nature, Cham 2018, 647–685

    Google Scholar 

  27. 27.

    M. Geissert, H. Heck, M. Hieber, and O. Sawada: Weak Neumann implies Stokes. J. Reine Angew. Math. 669 (2012), 75–100

    MathSciNet  MATH  Google Scholar 

  28. 28.

    M. Geissert, M. Hess, M. Hieber, C. Schwarz, and K. Stavrakidis: Maximal \(L^p\)-\(L^q\)-estimates for the Stokes equation: a short proof of Solonnikov’s theorem. J. Math. Fluid Mech. 12, 47–60 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Y. Giga: Domains of fractional powers of the Stokes operator in \(L_r\) spaces. Arch. Ration. Mech. Anal. 89, 251–265 (1985)

    MATH  Article  MathSciNet  Google Scholar 

  30. 30.

    Y. Giga: Solution for semilinear parabolic equations in \(L^p\) and regularity of weak solutions for the Navier–Stokes system. J. Differ. Equ. 61, 186-212 (1986)

    MATH  Article  MathSciNet  Google Scholar 

  31. 31.

    J. Guillod and V. Šverák: Numerical investigations of non-uniqueness for the Navier–Stokes initial value problem in borderline spaces. arXiv:1704.00560v1 (2017)

  32. 32.

    Zhengguang Guo, Yafei Li, and Z. Skalák: Regularity criteria of the incompressible Navier–Stokes equations via only one entry of velocity gradient. J. Math. Fluid Mech. 21:35 (2019)

  33. 33.

    Bin Han, Zhen Lei, Dong Li, and Na Zhao: Sharp one component regularity for Navier–Stokes. Arch. Ration. Mech. Anal. 231, 939–970 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    M. Hieber and J. Saal: The Stokes Equation in the \(L^p\)-Setting: Well-Posedness and Regularity Properties. In: Y. Giga and A. Novotný (eds.), Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer Nature, Cham 2018, 117-206

    Google Scholar 

  35. 35.

    E. Hopf: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213-231 (1951)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    H. Jia and V. Šverák: Are the incompressible 3d Navier–Stokes equations locally ill-posed in the natural energy space? J. Funct. Anal. 268, 3734–3766 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    T. Kato: Strong \(L^p\)-solutions of the Navier–Stokes equation in \({\mathbb{R}}^m\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

  38. 38.

    G. Koch, N. Nadirashvili, G. Seregin, and V. Šverák: Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 203, 83-105 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    H. Koch and D. Tataru: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22-35 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    O.A. Ladyzhenskaya and G.A. Seregin: On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. J. Math. Fluid Mech. 1, 356-387 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    J. Leray: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193-248 (1934)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    F. H. Lin: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Comm. Pure Appl. Math. LI, 241-257 (1998)

  43. 43.

    J. Nečas, M. Růžička, and V. Šverák: On Leray’s self-similar solutions of the Navier–Stokes equations. Acta Math. 176, 283–294 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    J. Neustupa, A. Novotný, and P. Penel: An interior regularity of a weak solution to the Navier–Stokes equations in dependence on one component of velocity. Topics in Mathematical Fluid Mechanics, Quad. Mat. 10, 163–183, Dept. Math., Seconda Univ. Napoli, Caserta, 2002

  45. 45.

    J. Neustupa and P. Penel: Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier–Stokes equations. In: J. Neustupa and P. Penel (eds.), Mathematical Fluid Mechanics, Recent Results and Open Questions, Birkhäuser, Basel 2001, 237-268.

    Google Scholar 

  46. 46.

    A. Noll and J. Saal: \(H^\infty \)-calculus for the Stokes operator on \(L_q\)-spaces. Math. Z. 244, 651-688 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    C.W. Oseen: Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig: Akademische Verlagsgesellschaft 1927

    Google Scholar 

  48. 48.

    W.S. Ożański: Weak solutions to the Navier–Stokes inequality with arbitrary energy profiles. Comm. Math. Phys. 374, 33-62 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    G. Seregin and V. Šverák: Navier–Stokes equations with lower bounds on the pressure. Arch. Ration. Mech. Anal. 163, 65-86 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    J. Serrin: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–187 (1962)

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    J. Serrin: The initial value problem for the Navier–Stokes equations. In: “Nonlinear Problems”, Univ. Wisconsin Press (R. E. Langer, ed.) 69–98 (1963)

  52. 52.

    Z. Skalák: The end-point regularity criterion for the Navier–Stokes equations in terms of \(\partial _3 u\). Nonlinear Anal. Real World Appl. 55 (2020), 103120

    MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    H. Sohr: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts. Birkhäuser Verlag Basel, Boston, Berlin 2001

    Google Scholar 

  54. 54.

    V.A. Solonnikov: Estimates for solutions of nonstationary Navier–Stokes equations. Zap. Nauchn. Sem. LOMI 38, 153–231 (1973) (Russian)

    Google Scholar 

  55. 55.

    T. Tao: Finite time blowup for an averaged three-dimensional Navier–Stokes equation. J. Amer. Math. Soc. 29, 601-674 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  56. 56.

    T.-P. Tsai: On Leray’s self-similar solutions of the Navier–Stokes equations satisfying local energy estimates. Arch. Rational Mech. Anal. 143, 29-51 (1998). Erratum: Arch. Rational Mech. Anal. 147, 363 (1999)

  57. 57.

    B. Wang: Ill-posedness for the Navier–Stokes equations in critical Besov spaces \(\dot{B}^{-1}_{\infty ,q}\). Adv. Math. 268, 350–372 (2015)

  58. 58.

    J. Wolf: A new criterion for partial regularity of suitable weak solutions to the Navier–Stokes equations. Advances in mathematical fluid mechanics, 613–630, Springer, Berlin, 2010

  59. 59.

    T. Yoneda: Ill-posedness of the 3D-Navier–Stokes equations in a generalized Besov space near \(BMO^{-1}\). J. Funct. Anal. 258, 3376–3387 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    M. E. Bogovskii: Decomposition of Lp(\(\Omega \);Rn) into the direct sum of subspaces of solenoidal and potential vector fields. Dokl. Akad. Nauk SSSR 286(4), 781–786 (1986)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reinhard Farwig.

Additional information

Dedicated to our colleague Matthias Hieber on the occasion of his 60th birthday

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farwig, R. From Jean Leray to the millennium problem: the Navier–Stokes equations. J. Evol. Equ. (2020). https://doi.org/10.1007/s00028-020-00645-3

Download citation

Keywords

  • Millennium problem
  • Navier–Stokes equations
  • Weak solutions
  • Regular solutions
  • Conditional regularity
  • Singularities
  • Uniqueness

Mathematics Subject Classification

  • 35-02
  • 35 Q 30
  • 76 D 05