Skip to main content
Log in

The essential spectrum of periodically stationary solutions of the complex Ginzburg–Landau equation

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We establish the existence and regularity properties of a monodromy operator for the linearization of the cubic–quintic complex Ginzburg–Landau equation about a periodically stationary (breather) solution. We derive a formula for the essential spectrum of the monodromy operator in terms of that of the associated asymptotic linear differential operator. This result is obtained using the theory of analytic semigroups under the assumption that the Ginzburg–Landau equation includes a spectral filtering (diffusion) term. We discuss applications to the stability of periodically stationary pulses in ultrafast fiber lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. We observe that the third condition in Hypothesis 3.1 that \(\varvec{\psi }\) decays exponentially can be significantly relaxed. In particular, we do not even require that \(\varvec{\psi }\) or \(\varvec{\psi }_x\) belongs to \(L^2(\mathbb R,\mathbb C^2)\).

References

  1. Akhmediev, N., Ankiewicz, A.: Three sources and three component parts of the concept of dissipative solitons. In: N. Akhmediev, A. Ankiewicz (eds.) Dissipative Solitons: From optics to biology and medicine Lecture Notes in Physics, vol. 751, pp. 1–28. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Akhmediev, N., Soto-Crespo, J., Town, G.: Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg–Landau equation approach. Phys. Rev. E 63(5), 056602 (2001)

    Google Scholar 

  3. Alejo, M.A.: Nonlinear stability of Gardner breathers. Journal of Differential Equations 264(2), 1192–1230 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Alejo, M.A., Cardoso, E.: Dynamics of breathers in the Gardner hierarchy: Universality of the variational characterization (2019)

  5. Alejo, M.A., Muñoz, C.: Nonlinear stability of mKdV breathers. Communications in Mathematical Physics 324(1), 233–262 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Alejo, M.A., Munoz, C., Palacios, J.M.: On the variational structure of breather solutions II: Periodic mKdV equation. Electron. J. Differential Equations 56, 26 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74(1), 99–143 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Chong, A., Buckley, J., Renninger, W., Wise, F.: All-normal-dispersion femtosecond fiber laser. Opt. Express 14(21), 10,095–10,100 (2006)

    Google Scholar 

  9. Chong, A., Wright, L.G., Wise, F.W.: Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress. Rep. Prog. Phys. 78(11), 113901 (2015)

    Google Scholar 

  10. Clarke, S., Grimshaw, R., Miller, P., Pelinovsky, E., Talipova, T.: On the generation of solitons and breathers in the modified Korteweg Vries equation. Chaos: An Interdisciplinary Journal of Nonlinear Science 10(2), 383–392 (2000). https://doi.org/10.1063/1.166505

  11. Cuevas-Maraver, J., Kevrekidis, P., Frantzeskakis, D., Karachalios, N., Haragus, M., James, G.: Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves. Phys. Rev. E 96(1), 012202 (2017)

    MathSciNet  Google Scholar 

  12. Doelman, A., Sandstede, B., Scheel, A., Schneider, G.: The dynamics of modulated wave trains. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  13. Duling, I.N.: All-fiber ring soliton laser mode locked with a nonlinear mirror. Opt. Lett. 16(8), 539–541 (1991)

    Google Scholar 

  14. Edmunds, D., Evans, D.: Spectral theory and differential operators. Oxford University Press, Oxford (2018)

    MATH  Google Scholar 

  15. Engel, K., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, Berlin (2000)

    MATH  Google Scholar 

  16. Evans, L.: Partial Differential Equations (Graduate Studies in Mathematics) (Providence, RI: American Mathematical Society (2010)

    Google Scholar 

  17. Fermann, M., Kruglov, V., Thomsen, B., Dudley, J., Harvey, J.: Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 84(26), 6010 (2000)

    Google Scholar 

  18. Garnier, J., Kalimeris, K.: Inverse scattering perturbation theory for the nonlinear Schrödinger equation with non-vanishing background. Journal of Physics A: Mathematical and Theoretical 45(3), 035202 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Gesztesy, F., Weikard, R.: Floquet theory revisited. Differential equations and mathematical physics pp. 67–84 (1995)

  20. Gordon, J.P., Haus, H.A.: Random walk of coherently amplified solitons in optical fiber transmission. Opt. Lett. 11, 665–667 (1986)

    Google Scholar 

  21. Grelu, P., Akhmediev, N.: Dissipative solitons for mode-locked lasers. Nature photonics 6(2), 84 (2012)

    Google Scholar 

  22. Hanche-Olsen, H., Holden, H.: The Kolmogorov–Riesz compactness theorem. Expositiones Mathematicae 28(4), 385–394 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Hartl, I., Schibli, T., Marcinkevicius, A., Yost, D., Hudson, D., Fermann, M., Ye, J.: Cavity-enhanced similariton Yb-fiber laser frequency comb: \(3\times 10^{14}\) W/cm\(^2\) peak intensity at 136 MHz. Opt. Lett. 32(19), 2870–2872 (2007)

    Google Scholar 

  24. Jones, C.R., Kutz, J.N.: Stability of mode-locked pulse solutions subject to saturable gain: Computing linear stability with the Floquet-Fourier-Hill method. J. Opt. Soc. Amer. B 27(6), 1184–1194 (2010)

    Google Scholar 

  25. Kapitula, T.: Stability criterion for bright solitary waves of the perturbed cubic-quintic Schrödinger equations. Physica D 116, 95–120 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Kapitula, T., Promislow, K.: Spectral and dynamical stability of nonlinear waves. Springer, Berlin (2013)

    MATH  Google Scholar 

  27. Kärtner, F., Morgner, U., Schibli, T., Ell, R., Haus, H., Fujimoto, J., Ippen, E.: Few-cycle pulses directly from a laser. In: Few-cycle laser pulse generation and its applications, pp. 73–136. Springer (2004)

  28. Kato, T.: Perturbation theory for linear operators, vol. 132. Springer, Berlin (2013)

    Google Scholar 

  29. Kaup, D.: Perturbation theory for solitons in optical fibers. Phys. Rev. A 42(9), 5689–5694 (1990)

    Google Scholar 

  30. Korotyaev, E.: Spectrum of the monodromy operator of the Schrödinger operator with a potential which is periodic with respect to time. Journal of Soviet Mathematics 21(5), 715–717 (1983)

    MATH  Google Scholar 

  31. Korotyaev, E.L.: On the eigenfunctions of the monodromy operator of the Schrödinger operator with a time-periodic potential. Mathematics of the USSR-Sbornik 52(2), 423 (1985)

    MATH  Google Scholar 

  32. Kuchment, P.A.: Floquet theory for partial differential equations, vol. 60. Birkhäuser, Basel (2012)

    MATH  Google Scholar 

  33. Kutz, J.N.: Mode-locked soliton lasers. SIAM Review 48(4), 629–678 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Kuznetsov, E.A.: Solitons in a parametrically unstable plasma. Soviet Physics Doklady 22, 507–508 (1977)

    Google Scholar 

  35. Ma, Y.C.: The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60(1), 43–58 (1979)

    MathSciNet  MATH  Google Scholar 

  36. Meyer, C.D.: Matrix analysis and applied linear algebra. SIAM, Philadelphia (2000)

    Google Scholar 

  37. Mollenauer, L.F., Stolen, R.H.: The soliton laser. Opt. Lett. 9(1), 13–15 (1984)

    Google Scholar 

  38. Muñoz, C.: Instability in nonlinear Schrödinger breathers. Proyecciones (Antofagasta) 36(4), 653–683 (2017)

    MATH  Google Scholar 

  39. Pazy, A.: Semigroups of linear operators and applications to partial differential equations, vol. 44. Springer, Berlin (2012)

    MATH  Google Scholar 

  40. Reed, M., Simon, B.: Methods of mathematical physics: Analysis of operators, volume IV (1980)

  41. Regelskis, K., Želudevičius, J., Viskontas, K., Račiukaitis, G.: Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering. Opt. Lett. 40(22), 5255–5258 (2015)

    Google Scholar 

  42. Renninger, W., Chong, A., Wise, F.: Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A 77(2), 023814 (2008)

    Google Scholar 

  43. Sandstede, B.: Stability of travelling waves. In: Handbook of dynamical systems, vol. 2, pp. 983–1055. Elsevier (2002)

  44. Sandstede, B., Scheel, A.: On the structure of spectra of modulated travelling waves. Mathematische Nachrichten 232(1), 39–93 (2001)

    MathSciNet  MATH  Google Scholar 

  45. Shen, Y., Zweck, J., Wang, S., Menyuk, C.: Spectra of short pulse solutions of the cubic-quintic complex Ginzburg-Landau equation near zero dispersion. Stud. Appl. Math. 137(2), 238–255 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Sidorenko, P., Fu, W., Wright, L.G., Olivier, M., Wise, F.W.: Self-seeded, multi-megawatt, Mamyshev oscillator. Opt. Lett. 43(11), 2672–2675 (2018)

    Google Scholar 

  47. Tamura, K., Ippen, E., Haus, H., Nelson, L.: 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 18(13), 1080–1082 (1993)

    Google Scholar 

  48. Tamura, K., Nelson, L., Haus, H., Ippen, E.: Soliton versus nonsoliton operation of fiber ring lasers. Appl. Phys. Lett. 64(2), 149–151 (1994)

    Google Scholar 

  49. Tsoy, E., Akhmediev, N.: Bifurcations from stationary to pulsating solitons in the cubic-quintic complex Ginzburg-Landau equation. Phys. Lett. A 343(6), 417–422 (2005)

    MATH  Google Scholar 

  50. Tsoy, E., Ankiewicz, A., Akhmediev, N.: Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. Phys. Rev. E 73(3), 036621 (2006)

    Google Scholar 

  51. Wilkening, J.: Harmonic stability of standing water waves (2019). Preprint arXiv:1903.05621

  52. Zweck, J., Menyuk, C.R.: Computation of the timing jitter, phase jitter, and linewidth of a similariton laser. J. Opt. Soc. Amer. B 35(5), 1200–1210 (2018)

    Google Scholar 

Download references

Acknowledgements

We thank the reviewer for their careful reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Zweck.

Additional information

To Matthias Hieber with best wishes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J.Z. was supported by the NSF under Grant DMS 1620293 and thanks the Department of Mathematics at UNC Chapel Hill for hosting his Fall 2018 sabbatical, during which this work began.

Y.L. was supported by the NSF under Grant DMS 1710989 and thanks the Courant Institute of Mathematical Sciences and, especially, Prof. Lai-Sang Young, for the opportunity to visit the Institute where this work was conducted.

J.L.M. was supported in part by NSF CAREER Grant DMS 1352353 and NSF Grant DMS 1909035.

C.K.R.T.J. was supported by the US Office of Naval Research under Grant N00014-18-1-2204.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zweck, J., Latushkin, Y., Marzuola, J.L. et al. The essential spectrum of periodically stationary solutions of the complex Ginzburg–Landau equation. J. Evol. Equ. 21, 3313–3329 (2021). https://doi.org/10.1007/s00028-020-00640-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-020-00640-8

Keywords

Mathematics Subject Classification

Navigation