Remarks on exponential stability for a coupled system of elasticity and thermoelasticity with second sound


We study the large time behavior of solutions to a linear transmission problem in one space dimension. The problem at hand models a thermoelastic material with second sound confined by a purely elastic one. We shall characterize all equilibrium states of the considered system and prove that every solution approaches one designated equilibrium state with an exponential rate as time goes to infinity. Hereto, we apply methods from the theory of strongly continuous semigroups. In particular, we obtain uniform resolvent bounds for the underlying generator. This removes the largeness assumption of elastic wave speeds imposed in Meng and Wang (Anal Appl (Singap) 13, 2015) for having an exponential energy decay rate when the problem only has the trivial equilibrium. In an appendix, we provide a similar exponential stability result for the case where heat conduction is modeled using Fourier’s law.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Margareth S. Alves, Pedro Gamboa, Ganesh C. Gorain, Amelie Rambaud, and Octavio Vera. Asymptotic behavior of a flexible structure with Cattaneo type of thermal effect. Indag. Math. (N.S.), 27(3):821–834, 2016.

    MathSciNet  Article  Google Scholar 

  2. 2.

    Margareth S. Alves, Jaime Muñoz Rivera, Mauricio Sepúlveda, Octavio Vera Villagrán, and María Zegarra Garay. The asymptotic behavior of the linear transmission problem in viscoelasticity. Math. Nachr., 287(5-6):483–497, 2014.

    MathSciNet  Article  Google Scholar 

  3. 3.

    Charles Batty, Lassi Paunonen, and David Seifert. Optimal energy decay in a one-dimensional coupled wave-heat system. J. Evol. Equ., 16(3):649–664, 2016.

    MathSciNet  Article  Google Scholar 

  4. 4.

    Charles Batty, Lassi Paunonen, and David Seifert. Optimal energy decay for the wave-heat system on a rectangular domain. SIAM J. Math. Anal., 51(2):808–819, 2019.

    MathSciNet  Article  Google Scholar 

  5. 5.

    Klaus-Jochen Engel and Rainer Nagel. One-Parameter Semigroups for Linear Evolution Equations, volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.

  6. 6.

    Luci Harue Fatori, Edson Lueders, and Jaime E. Muñoz Rivera. Transmission problem for hyperbolic thermoelastic systems. J. Thermal Stresses, 26(7):739–763, 2003.

    MathSciNet  Article  Google Scholar 

  7. 7.

    Zhong-Jie Han and Gen-Qi Xu. Spectrum and stability analysis for a transmission problem in thermoelasticity with a concentrated mass. Z. Angew. Math. Phys., 66(4):1717–1736, 2015.

    MathSciNet  Article  Google Scholar 

  8. 8.

    Fa Lun Huang. Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differential Equations, 1(1):43–56, 1985.

    MathSciNet  MATH  Google Scholar 

  9. 9.

    J.-L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and Applications. Vol. I. Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.

  10. 10.

    Wenjun Liu, Danhua Wang, and Dongqin Chen. General decay of solution for a transmission problem in infinite memory-type thermoelasticity with second sound. Journal of Thermal Stresses, 41(6):758–775, 2018.

    Article  Google Scholar 

  11. 11.

    Zhuangyi Liu and Songmu Zheng. Semigroups Associated with Dissipative Systems, volume 398 of Chapman & Hall/CRC Research Notes in Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 1999.

  12. 12.

    Alfredo Marzocchi, Jaime E. Muñoz Rivera, and Maria Grazia Naso. Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity. Math. Methods Appl. Sci., 25(11):955–980, 2002.

    MathSciNet  Article  Google Scholar 

  13. 13.

    Yi-Ping Meng and Ya-Guang Wang. Stability for a nonlinear coupled system of elasticity and thermoelasticity with second sound. Anal. Appl. (Singap.), 13(1):45–75, 2015.

    MathSciNet  Article  Google Scholar 

  14. 14.

    Jaime E. Muñoz Rivera and Higidio Portillo Oquendo. A transmission problem for thermoelastic plates. Quart. Appl. Math., 62(2):273–293, 2004.

    MathSciNet  Article  Google Scholar 

  15. 15.

    Jaime E. Muñoz Rivera and Reinhard Racke. Transmission problems in (thermo)viscoelasticity with Kelvin-Voigt damping: nonexponential, strong, and polynomial stability. SIAM J. Math. Anal., 49(5):3741–3765, 2017.

    MathSciNet  Article  Google Scholar 

  16. 16.

    Abraham C. S. Ng and David Seifert. Optimal energy decay in a one-dimensional wave-heat system with infinite heat part. J. Math. Anal. Appl., 482(2):123563, 15, 2020.

    MathSciNet  Article  Google Scholar 

  17. 17.

    Jan Prüss. On the spectrum of \(C_{0}\)-semigroups. Trans. Amer. Math. Soc., 284(2):847–857, 1984.

    MathSciNet  Article  Google Scholar 

  18. 18.

    Reinhard Racke. Thermoelasticity with second sound—exponential stability in linear and non-linear 1-d. Math. Methods Appl. Sci., 25(5):409–441, 2002.

    MathSciNet  Article  Google Scholar 

  19. 19.

    Reinhard Racke. Thermoelasticity. In Handbook of Differential Equations: Evolutionary Equations. Vol. V, Handb. Differ. Equ., pages 315–420. Elsevier/North-Holland, Amsterdam, 2009.

  20. 20.

    Łukasz Rzepnicki and Roland Schnaubelt. Polynomial stability for a system of coupled strings. Bull. Lond. Math. Soc., 50(6):1117–1136, 2018.

    MathSciNet  Article  Google Scholar 

  21. 21.

    Hugo D Fernández Sare, Jaime E Muñoz Rivera, and Reinhard Racke. Stability for a Transmission Problem in Thermoelasticity with Second Sound. Journal of Thermal Stresses, 31(12):1170–1189, 2008.

    Article  Google Scholar 

  22. 22.

    Pei Su, Marius Tucsnak, and George Weiss. Stabilizability properties of a linearized water waves system. Systems Control Lett., 139:104672, 10, 2020.

    MathSciNet  Article  Google Scholar 

  23. 23.

    Juan C. Vila Bravo and Jaime E. Muñoz Rivera. The transmission problem to thermoelastic plate of hyperbolic type. IMA J. Appl. Math., 74(6):950–962, 2009.

    MathSciNet  Article  Google Scholar 

  24. 24.

    Xu Zhang and Enrique Zuazua. Polynomial decay and control of a \(1-d\) hyperbolic-parabolic coupled system. J. Differential Equations, 204(2):380–438, 2004.

    MathSciNet  Article  Google Scholar 

  25. 25.

    Xu Zhang and Enrique Zuazua. Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction. Arch. Ration. Mech. Anal., 184(1):49–120, 2007.

    MathSciNet  Article  Google Scholar 

Download references


We would like to thank the anonymous referee for many constructive remarks, which helped us to improve the readability of this article. This research was partially supported by the National Natural Science Foundation of China (NNSFC) under Grant No. 11631008.


This research was partially supported by the National Natural Science Foundation of China (NNSFC) under Grant No. 11631008.

Author information



Corresponding author

Correspondence to Manuel Rissel.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Uniform exponential stability in the case of Fourier’s law

Appendix A: Uniform exponential stability in the case of Fourier’s law

We demonstrate in this appendix how exponential stability can be obtained, by the same method as above, when the thermoelastic material is modeled in the classical way using Fourier’s law for heat conduction. We present all steps but shall avoid repeated proofs and explanations. From now on, the heat flux q is given by \(q = -k \theta _x\), see e.g., [19], and with constants \(a, b , m, k > 0\), the system (1) becomes

$$\begin{aligned} u_{tt} - a u_{xx} + m \theta _x= & {} 0 \quad \text{ in } \quad [L_1, _2]\times {\mathbb {R}}_+, \nonumber \\ \theta _t - k^2 \theta _{xx} + mu_{xt}= & {} 0 \quad \text{ in } \quad [L_1, L_2]\times {\mathbb {R}}_+, \nonumber \\ v_{tt} - b v_{xx}= & {} 0 \quad \text{ in } \quad [0, L_1] \cup [L_2, L_3] \times {\mathbb {R}}_+. \end{aligned}$$

The only difference to (2)–(4) is that, instead of the boundary condition for q, now \(\theta _x(L_1, t) = \theta _x(L_2, t) = 0\) is imposed for \(t \ge 0\) and that the initial condition for q is dropped. The state space is given by

$$\begin{aligned} {\mathscr {H}}_F:= & {} \Big \{ [u^1, v^1, \theta , u^2, v^2]' \in H^1(L_1, L_2) \times H^1((0, L_1) \cup (L_2, L_3)) \\&\times L^2(L_1, L_2) \times L^2(L_1, L_2) \times L^2((0,L_1) \cup (L_2,L_3)) \\ \text{ such } \text{ that } v^1(0)= & {} v^1(L_3) = 0 \text{ and } u^1(L_i) = v^1(L_i) \text{ for } i= 1,2 \Big \}, \end{aligned}$$

equipped, using (7), with the norm \(\Vert \cdot \Vert _{{\mathscr {H}}_F}\) induced by the inner product

$$\begin{aligned} \langle U, {\tilde{U}} \rangle _{{\mathscr {H}}_F} := \int _{L_1}^{L_2} \left( a u^1_x \overline{\tilde{u^1_x}} + u^2 \overline{\tilde{u^2}} + \theta \overline{{\tilde{\theta }}} \right) \, \mathrm{d}x + \left[ \int _0^{L_1} + \int _{L_2}^{L_3}\right] \left( b v^1_x \overline{\tilde{v^1}_x} + v^2 \overline{\tilde{v^2}} \right) \, \mathrm{d}x. \end{aligned}$$

Let the linear operator \({\mathscr {A}}_F :{\mathscr {H}}_F \supseteq D({\mathscr {A}}_F) \rightarrow {\mathscr {H}}_F\) be defined for \(U = [u^1, v^1, \theta , u^2, v^2]'\) by

$$\begin{aligned} {\mathscr {A}}_FU := [u^2, v^2, k^2\theta _{xx} -mu^2_x, au^1_{xx} -m\theta _x, bv^1_{xx}]', \end{aligned}$$

on the domain

$$\begin{aligned} D({\mathscr {A}}_F)= & {} \Big \{ U \in {\mathscr {H}}_F \cap \big [ H^2(L_1, L_2) \times H^2((0, L_1) \cup (L_2, L_3)) \times H^2(L_1, L_2) \\&\times H^1(L_1, L_2) \times H^1((0, L_1) \cup (L_2, L_3)) \big ] \,\, \Big | \,\, u^2(L_i) = v^2(L_i), \\&v^2(0) = v^2(L_3) = 0, \, au^1_x(L_i) - m\theta (L_i) = bv^1_x(L_i), \, \theta _x(L_i) = 0, \, i = 1,2 \Big \}, \end{aligned}$$

such that (A.1) as well as the initial and boundary conditions transform into the following Cauchy problem in \({\mathscr {H}}_F\),

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}U(t)= & {} {\mathscr {A}}_F U(t), \quad t \ge 0, \nonumber \\ U(0)= & {} U_0 \in {\mathscr {H}}_F. \end{aligned}$$

As in Proposition 2.1, \({\mathscr {A}}_F\) is densely defined and using in particular the boundary conditions prescribed via \({\mathscr {H}}_F\) and \(D({\mathscr {A}}_F)\) one can verify that \({\mathscr {A}}_F^*\) is given by \(D({\mathscr {A}}_F^*) = D({\mathscr {A}}_F)\) and

$$\begin{aligned} {\mathscr {A}}_F^* [u^1, v^1, \theta , u^2, v^2]' = [-u^2, -v^2, k^2\theta _{xx} + mu^2_x, -au^1_{xx} + m\theta _x, -bv^1_{xx}]'. \end{aligned}$$

Repeating these calculations, one finds \(({\mathscr {A}}_F^*)^* = {\mathscr {A}}_F\), which implies that \({\mathscr {A}}_F\) is closed. Moreover, for \(U \in D({\mathscr {A}}_F) = D({\mathscr {A}}_F^*)\) it holds that

$$\begin{aligned} \begin{aligned} \mathfrak {R}\langle {\mathscr {A}}_FU, U \rangle _{{\mathscr {H}}_F} = \mathfrak {R}\langle {\mathscr {A}}_F^*U, U \rangle _{{\mathscr {H}}_F} = - k^2 \int _{L_1}^{L_2} \theta _x \overline{\theta _x} \, \mathrm{d}x \le 0. \end{aligned} \end{aligned}$$

Hence, \({\mathscr {A}}_F\) and \({\mathscr {A}}_F^*\) are dissipative and, by the Lumer and Phillips Theorem, \({\mathscr {A}}_F\) generates a strongly continuous contraction semigroup \((T_F(t))_{t \ge 0}\) on \({\mathscr {H}}_F\). Moreover, \(\sigma ({\mathscr {A}}_F) \subseteq \{\mathfrak {R}\lambda \le 0\}\) consists only of eigenvalues due to the compact embedding \(D({\mathscr {A}}_F) \hookrightarrow {\mathscr {H}}_F\).

Remark A.1

For \(U \in D({\mathscr {A}}_F)\), \(l \in {\mathbb {R}}\) and \(F = (il - {\mathscr {A}}_F)U\), we have like in Remark 2.2 that \(k^2\Vert \theta _x\Vert _{L^2(L_1,L_2)}^2\le \Vert U\Vert _{{\mathscr {H}}_F} \Vert F\Vert _{{\mathscr {H}}_F}\).

The statement of Proposition 2.2 and its proof remain true if one replaces q by \(-k\theta _x\) at some points or deletes some expressions which do not appear anymore.

Proposition A.1

It is \(0 \in \sigma ({\mathscr {A}}_F)\), \(i {\mathbb {R}} \cap \sigma ({\mathscr {A}}_F) = \{0\}\) and the stationary solutions of (A.2) are characterized by \(\hbox {ker}({\mathscr {A}}_F) = \hbox {span}_{{\mathscr {H}}_F}\left\{ [\zeta ^1, \zeta ^2, \zeta ^3, 0, 0]' \right\} \), where \(\zeta ^1, \zeta ^2\) and \(\zeta ^3\) are the same as defined in Proposition 2.2.

Because \(\hbox {ker}({\mathscr {A}}_F) = \hbox {ker}({\mathscr {A}}_F^*)\), the following result can be proved like Lemma 2.1.

Lemma A.1

\({\mathscr {H}}_F = \hbox {ker}({\mathscr {A}}_F) \oplus \mathrm{range}({\mathscr {A}}_F)\).

Since \(\hbox {ker}({\mathscr {A}}_F)\) is non-trivial, the operator \({\mathscr {A}}_{F,0}\) is introduced as the restriction of \({\mathscr {A}}_F\) to \(\hbox {range}({\mathscr {A}}_F)\) with domain \(D({\mathscr {A}}_{F, 0}) = D({\mathscr {A}}_F) \cap \hbox {range}({\mathscr {A}}_F)\), and by Lemma A.1 it holds that \(\sigma ({\mathscr {A}}_{F, 0}) = \sigma ({\mathscr {A}}_F)\setminus \{0\}\). In order to apply Theorem 3.1, which will lead to exponential stability for \((T_F(t))_{t \ge 0}\) in the same way as demonstrated for \((T(t))_{t \ge 0}\), we argue by contradiction and assume that (16) is not true for \({\mathscr {A}}_{F, 0}\). Then there exists a sequence \((l_n)_{n \in {\mathbb {N}}} \subseteq {\mathbb {R}}\setminus \{0\}\) with \(|l_n| \rightarrow +\infty \), as \(n \rightarrow +\infty \) and, dropping the index n, a sequence \(U_l \in D({\mathscr {A}}_{F, 0})\) with \(\Vert U_l\Vert _{{\mathscr {H}}_F} = 1\) for all \(l \in \{l_n \, | \, n \in {\mathbb {N}} \}\) such that in \({\mathscr {H}}_F\) we have

$$\begin{aligned} F_l = [f^1_l, g^1_l, h_l, p_l, f^2_l, g^2_l]' := (il - {\mathscr {A}}_{F, 0})U_l \rightarrow 0, \quad |l| \rightarrow +\infty . \end{aligned}$$

Then, for \(|l| \rightarrow +\infty \), it holds that

$$\begin{aligned}&il u^1_l - u^2_l = f^1_l \longrightarrow 0 \quad \text{ in } \quad H^1(L_1,L_2), \end{aligned}$$
$$\begin{aligned}&il v^1_l - v^2_l = g^1_l \longrightarrow 0 \quad \text{ in } H^1((0, L_1) \cup (L_2, L_3)),\end{aligned}$$
$$\begin{aligned}&il \theta _l - k^2\theta _{l,\, xx} + mu^2_{l,\, x} = h_l \longrightarrow 0 \quad \text{ in } \quad L^2(L_1,L_2),\end{aligned}$$
$$\begin{aligned}&il u^2_l - au^1_{l,\, xx} + m \theta _{l,\, x} = f^2_l \longrightarrow 0 \quad \text{ in } L^2(L_1,L_2), \end{aligned}$$
$$\begin{aligned}&il v^2_l - bv^1_{l,\, xx} = g^2_l \longrightarrow 0 \quad \text{ in } L^2((0,L_1) \cup (L_2,L_3)). \end{aligned}$$

For the model with Cattaneo’s law, in the context of Sect. 3, the equation (17d) prevented one to conclude \(\theta _{l,\, x} \rightarrow 0\) in \(L^2\) as \(|l| \rightarrow + \infty \). However, here this convergence holds due to Remark A.1, which leads to simplifications at some points. We continue as in Sect. 3 and observe from (A.4a) and (A.4b) that \(\Vert u^1_l\Vert _{L^2(L_1, L_2)} \rightarrow 0\), \(\Vert v^1_l\Vert _{L^2((0,L_1) \cup (L_2,L_3))} \rightarrow 0\) as \(|l| \rightarrow +\infty \), as well as from (A.4c) and (A.4d) that

$$\begin{aligned} |l| \Vert \theta _l\Vert _{H^{-1}(L_1, L_2)}\le & {} C (\Vert \theta _{l,\, x}\Vert _{L^2(L_1, L_2)} + \Vert u^2_l\Vert _{L^2(L_1, L_2)} + \Vert F_l\Vert _{{\mathscr {H}}_F} ),\\ |l| \Vert u^2_l\Vert _{H^{-1}(L_1, L_2)}\le & {} C (\Vert u^1_{l,\, x}\Vert _{L^2(L_1, L_2)} + \Vert \theta _l\Vert _{L^2(L_1, L_2)} + \Vert F_l\Vert _{{\mathscr {H}}_F} ). \end{aligned}$$

By interpolation and Remark A.1, noting that now \(\Vert \theta _{l,\, x}\Vert _{L^2(L_1, L_2)} \rightarrow 0\) for \(|l| \rightarrow +\infty \), it holds

$$\begin{aligned} \Vert \theta _l\Vert _{L^2(L_1, L_2)}^2\le & {} \Vert \theta _l\Vert _{H^{-1}(L_1, L_2)}\Vert \theta _l\Vert _{H^{1}(L_1, L_2)} \nonumber \\\le & {} \frac{1}{|l|} C (\Vert \theta _{l,\, x}\Vert _{L^2(L_1, L_2)} + \Vert u^2_l\Vert _{L^2(L_1, L_2)} + \Vert F_l\Vert _{{\mathscr {H}}_F}) \nonumber \\&\times (\Vert \theta _l\Vert _{L^2(L_1, L_2)} + \Vert \theta _{l,\, x} \Vert _{L^2(L_1, L_2)}) \nonumber \\\rightarrow & {} 0, \quad |l| \rightarrow +\infty . \end{aligned}$$

Moreover, one has

$$\begin{aligned} \Vert u^2_l\Vert _{L^2(L_1, L_2)}^2\le & {} \Vert u^2_l\Vert _{H^{-1}(L_1, L_2)}\Vert u^2_l\Vert _{H^{1}(L_1, L_2)} \nonumber \\\le & {} \frac{C}{|l|} (\Vert u^1_{l,\, x}\Vert _{L^2(L_1, L_2)} + \Vert \theta _l\Vert _{L^2(L_1, L_2)} + \Vert F_l\Vert _{{\mathscr {H}}_F}) \Vert u^2_l\Vert _{H^1(L_1, L_2)}\nonumber \\= & {} \frac{C}{|l|} (\Vert u^1_{l,\, x}\Vert _{L^2(L_1, L_2)} + \Vert \theta _l\Vert _{L^2(L_1, L_2)} + \Vert F_l\Vert _{{\mathscr {H}}_F}) \Vert il u^1_l - f_l \Vert _{H^1(L_1, L_2)}.\nonumber \\ \end{aligned}$$

Now, we can conclude similar to Lemma 3.1 that \(u^1_{l,\, x}\) and \(u^2_l\) converge to zero. Hereto, by using (A.4a), (A.4c), (A.4d), as well as the boundary condition for \(\theta _{l,\, x}\), we obtain

$$\begin{aligned} 0= & {} \int _{L_1}^{L_2} \left[ \theta _l \overline{u^1_{l,\, x}} + \frac{1}{il} \left( k^2 \theta _{l,\, x} \overline{u^1_{l,\, xx}} + m(ilu^1_{l,\, x} - f^1_{l,\, x})\overline{u^1_{l,\, x}} -h_l \overline{u^1_{l,\, x}} \right) \right] \, \mathrm{d}x\nonumber \\= & {} \int _{L_1}^{L_2} \left[ \theta _l \overline{u^1_{l,\, x}} \right. \nonumber \\&\left. + m|u^1_{l,\, x}|^2 + \frac{1}{il} \left( \frac{k^2}{a} \theta _{l,\, x} (-il\overline{u^2_l} + m \overline{\theta _{l,\, x}} - \overline{f^2_l}) - mf^1_{l,\, x}\overline{u^1_{l,\, x}} - h_l \overline{u^1_{l,\, x}} \right) \right] \, \mathrm{d}x.\nonumber \\ \end{aligned}$$

From \(\Vert U_l\Vert _{{\mathscr {H}}_F} = 1\), \(\Vert F_l\Vert _{{\mathscr {H}}_F} \rightarrow 0\) as \(|l| \rightarrow +\infty \), (A.5) and Remark A.1, one can deduce

$$\begin{aligned} \begin{aligned}&\int _{L_1}^{L_2} \left[ \theta _l \overline{u^1_{l,\, x}} + \frac{1}{il} \left( \frac{k^2}{a} \theta _{l,\, x} (-il\overline{u^2_l} + m \overline{\theta _{l,\, x}} - \overline{f^2_l}) - mf^1_{l,\, x}\overline{u^1_{l,\, x}} - h_l \overline{u^1_{l,\, x}} \right) \right] \\&\quad \mathrm{d}x \rightarrow 0, \, |l| \rightarrow +\infty , \end{aligned} \end{aligned}$$

which implies together with (A.7) that \(\Vert u^1_{l,\, x}\Vert _{L^2(L_1,L_2)} \rightarrow 0\) as \(|l| \rightarrow +\infty \) and, by employing Eq. (A.6), one also has \(\Vert u^2_l\Vert _{L^2(L_1,L_2)} \rightarrow 0\) as \(|l| \rightarrow +\infty \).

In order to obtain controls for \(\Vert v^1_{l,\, x}\Vert _{L^2((0, L_1) \cup (L_2, L_3))}\) and \(\Vert v^2_l\Vert _{L^2((0, L_1) \cup (L_2, L_3))}\), we first multiply (A.4d) with \(\overline{u^1_{l,\, x}}(L_2 - x)\), integrate over \((L_1, L_2)\), take real parts, incorporate (A.4a) and deduce

$$\begin{aligned} 0= & {} - \int _{L_1}^{L_2} \left[ \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}x} |u^2_l|^2 + \frac{a}{2} \frac{\mathrm{d}}{\mathrm{d}x} |u^1_{l,\, x}|^2 \right] (L_2 - x) \, \mathrm{d}x \nonumber \\&- \underset{=: {\tilde{R}}_4}{\underbrace{ \mathfrak {R}\int _{L_1}^{L_2} \left[ u^2_l \overline{f^1_{l\, x}} - m \theta _{l,\, x} \overline{u^1_{l,\, x}} + f^2_l\overline{u^1_{l,\, x}} \right] (L_2 - x) \, \mathrm{d}x }}. \end{aligned}$$

Repeating this calculation, but multiplying (A.4d) now with \(\overline{u^1_{l,\, x}}(L_1 - x)\), results in

$$\begin{aligned} 0= & {} -\int _{L_1}^{L_2} \left[ \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}x} |u^2_l|^2 + \frac{a}{2} \frac{\mathrm{d}}{\mathrm{d}x} |u^1_{l,\, x}|^2 \right] (L_1 - x) \, \mathrm{d}x \nonumber \\&- \underset{=: {\tilde{R}}_5}{\underbrace{ \mathfrak {R}\int _{L_1}^{L_2} \left[ u^2_l \overline{f^1_{l\, x}} - m \theta _{l,\, x} \overline{u^1_{l,\, x}} + f^2_l\overline{u^1_{l,\, x}} \right] (L_1 - x) \, \mathrm{d}x }}, \end{aligned}$$

and summing (A.8) and (A.9), as well as using integration by parts, leads to

$$\begin{aligned} \int _{L_1}^{L_2} \left[ |u^2_l|^2 + a |u^1_{l,\, x}|^2 \right] \, \mathrm{d}x + {\tilde{R}}_4 + {\tilde{R}}_5 = \frac{L_2-L_1}{2} \sum \limits _{i=1,2} \left[ |u^2_l(L_i)|^2 + a|u^1_{l,\, x}(L_i)|^2 \right] . \end{aligned}$$

Both \({\tilde{R}}_4\) and \({\tilde{R}}_5\) converge to zero for \(|l| \rightarrow +\infty \) by the usual argument. In a similar manner as before, by multiplying (A.4e) with \(\overline{v^1_{l,\, x}}x\) and integrating over \((0, L_1)\), followed by multiplying (A.4e) with \(\overline{v^1_{l,\, x}}(L_3-x)\) and integrating over \((L_2, L_3)\), one obtains

$$\begin{aligned} 0= & {} \frac{b}{2} \Vert v^1_{l,\, x}\Vert _{L^2((0, L_1) \cup (L_2, L_3))}^2 + \frac{1}{2}\Vert v^2\Vert _{L^2((0, L_1) \cup (L_2, L_3))}^2 \nonumber \\&- \frac{1}{2} L_1 [|v^2_l(L_1)|^2 + b|v^1_{l,\, x}(L_1)|^2] - \frac{1}{2} (L_3 - L_2) [|v^2_l(L_2)|^2 + b|v^1_{l,\, x}(L_2)|^2]\nonumber \\&+ \underset{=: {\tilde{R}}_6}{\underbrace{\mathfrak {R}\int _{L_2}^{L_3} \left[ v^2_l\overline{g^1_{l,\, x}} + v^2_l\overline{g^1_{l,\, x}} \right] (L_3 - x) \, \mathrm{d}x - \mathfrak {R}\int _0^{L_1} \left[ v^2_l\overline{g^1_{l,\, x}} + g^2_l\overline{v^1_{l,\, x}} \right] x \, \mathrm{d}x}}.\nonumber \\ \end{aligned}$$

Note that, due to the usual Sobolev embedding, \(|\theta _l(x)| \le C \Vert \theta _l\Vert _{H^1(L_1, L_2)}\) for all \(x \in [L_1, L_2]\), where \(C > 0\) is independent of \(l \in \{l_n \, | \, n \in {\mathbb {N}} \}\). Therefore, there exist \(C_1, C_2 > 0\), independent of l, such that for

$$\begin{aligned} I := \Vert v^1_{l,\, x}\Vert _{L^2((0, L_1) \cup (L_2, L_3))}^2 + \Vert v^2\Vert _{L^2((0, L_1) \cup (L_2, L_3))}^2 , \end{aligned}$$

one can infer from (A.11) and the transmission conditions that

$$\begin{aligned} I\le & {} C_1 \sum \limits _{i=1,2} \left[ |u^2_l(L_i)|^2 + |u^1_{l,\, x}(L_i)|^2 + |\theta _l(L_i)|^2 + |u^1_{l,\, x}(L_i)||\theta _l(L_i)| \right] + C_1|{\tilde{R}}_6| \nonumber \\\le & {} C_2 \sum \limits _{i=1,2} \left[ |u^2_l(L_i)|^2 + |u^1_{l,\, x}(L_i)|^2 + \Vert \theta _l\Vert _{H^1(L_1, L_2)}^2 + |u^1_{l,\, x}(L_i)|\Vert \theta _l\Vert _{H^1(L_1, L_2)} \right] \nonumber \\&+ C_1|{\tilde{R}}_6|, \end{aligned}$$

where \({\tilde{R}}_6\) vanishes as \(|l| \rightarrow +\infty \). Furthermore, (A.10) allows to infer \(|u^2_l(L_i)| + |u^1_{l,\, x}(L_i)| \rightarrow 0\), as \(|l| \rightarrow +\infty \), for \(i=1,2\) and Remark A.1 together with (A.5) implies \(\Vert \theta _l \Vert _{H^1(L_1, L_2)} \rightarrow 0\), as \(|l| \rightarrow +\infty \). As a result, from (A.12) it follows that \(I \rightarrow 0\), as \(|l| \rightarrow +\infty \). In total, all terms contained in \(\Vert U_l\Vert _{{\mathscr {H}}_F}\) are seen to converge to zero for large |l| and we arrive at

$$\begin{aligned} \Vert U_l\Vert _{{\mathscr {H}}_F} \rightarrow 0, \quad |l| \rightarrow +\infty , \end{aligned}$$

which is in contradiction with \(\Vert U_l\Vert _{{\mathscr {H}}_F} = 1\).

Above we verified the requirements of Theorem 3.1 for \({\mathscr {A}}_{F,0}\) and therefore conclude the following exponential stability result, which can be proved in the same way as Theorem 3.2.

Theorem A.1

Let \(U_0 \in {\mathscr {H}}_F\), according to Lemma A.1 be uniquely decomposed as \(U_0 = W_0 + V_0\), with \(W_0 \in \hbox {ker}({\mathscr {A}}_F)\) and \(V_0 \in \hbox {range}({\mathscr {A}}_F)\). There exist constants \(M > 0\) and \(\omega > 0\), which are independent of \(U_0\), such that

$$\begin{aligned} \Vert T_F(t) U_0 - W_0\Vert _{{\mathscr {H}}_F} \le M \hbox {e}^{-\omega t} \Vert U_0 \Vert _{{\mathscr {H}}_F} \quad (t \ge 0). \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rissel, M., Wang, YG. Remarks on exponential stability for a coupled system of elasticity and thermoelasticity with second sound. J. Evol. Equ. (2020).

Download citation

Mathematics Subject Classification

  • 35B35
  • 35B40
  • 35M33
  • 47D06


  • Transmission problem
  • Thermoelasticity
  • Elasticity
  • Second sound
  • Exponential stability