Skip to main content
Log in

Convergence of filtered weak solutions to the 2D Euler equations with measure-valued vorticity

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We study weak solutions of the two-dimensional (2D) filtered Euler equations for measure-valued initial vorticity. The filtered Euler equations are a regularized model based on a spatial filtering to the Euler equations and have a unique global weak solution for initial vorticity in the space of a finite Radon measure. In this paper, we treat the vortex sheet problem and the point-vortex problem on the 2D filtered Euler equations. We prove that vortex sheet solutions of the 2D filtered Euler equations converge to those of the 2D Euler equations in the limit of the filtering parameter when initial vortex sheet has a distinguished sign. In addition, we make it clear what kind of condition should be imposed on the spatial filter to show the convergence and, according to the condition, our result is applicable to well-known regularized models such as the Euler-\(\alpha \) model and the vortex blob model. We also show that filtered point vortices converge to a solution of the point-vortex system provided that collision of point vortices does not occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. C. Anderson, A vortex method for flows with slight density variations, J. Comput. Phys., 61 (1985), 417–444.

    MathSciNet  MATH  Google Scholar 

  2. H. Aref, Motion of three vortices, Phys. Fluids, 22(3) (1979), 393–400.

    MATH  Google Scholar 

  3. C. Bardos, J. S. Linshiz and E. S. Titi, Global regularity and convergence of a Birkhoff–Rott-\(\alpha \) approximation of the dynamics of vortex sheets of the two-dimensional Euler equations, Comm. Pure Appl. Math., 63 (2010), 697–746.

    MathSciNet  MATH  Google Scholar 

  4. L. C. Berselli and M. Gubinelli, On the global evolution of vortex filaments, blobs, and small loops in 3D ideal flows, Comm. Math. Phys., 269 (2007), 693–713.

    MathSciNet  MATH  Google Scholar 

  5. G. Birkhoff, Helmholtz and Taylor instability, Proc. Symp. Appl. Math., Amer. Math. Soc., Providence, R.I., (1962), 55–76.

  6. R.E. Caflisch and O.F. Orellana, Long time existence for a slightly perturbed vortex sheet, Commun. Pure Appl.Math., 39 (1986), 807–838.

    MathSciNet  MATH  Google Scholar 

  7. S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi S. Wynne, Camassa–Holm equations as a closure model for turbulent channel and pipe flow, Phy. Rev. Lett., 81(24) (1998), 5338–5341.

    MathSciNet  MATH  Google Scholar 

  8. S. Chen, D. D. Holm, L. G. Margolin and R. Zhang, Direct numerical simulations of the Navier–Stokes alpha model, Physica D, 133 (1999), 66–83.

    MathSciNet  MATH  Google Scholar 

  9. A. J. Chorin and P. S. Bernard, Discretization of a vortex sheet, with an example of roll-up, J. Comput. Phys., 13 (1973), 423–429.

    MATH  Google Scholar 

  10. J.-M.Delort, Existence de nappe de tourbillion en dimension deux, J. Amer. Math. Soc., 4 (1991), 553–586.

    MathSciNet  MATH  Google Scholar 

  11. R. J. Diperna and A. J. Majda, Concentrations in regularizations for 2-D incompressible flow, Comm. Pure Appl. Math., 40 (1987), 301–345.

    MathSciNet  MATH  Google Scholar 

  12. J. Duchon and R. Robert, Global vortex sheet solutions of Euler equations in the plane. J. Differential Equations, 73(2) (1988), 215–224.

    MathSciNet  MATH  Google Scholar 

  13. C. Foias, D. D. Holm and E. S. Titi, The Navier–Stokes-alpha model of fluid turbulence, Physica D, 152-153 (2001), 505–519.

    MathSciNet  MATH  Google Scholar 

  14. C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory, J. Dyn. Diff. Equ., 14 (2002), 1–35.

    MathSciNet  MATH  Google Scholar 

  15. T. Gallay, Interaction of vortices in weakly viscous planar flows, Arch. Rat. Mech. Anal., 200 (2011), 445–490.

    MathSciNet  MATH  Google Scholar 

  16. T. Gotoda, Global solvability for two-dimensional filtered Euler equations with measure valued initial vorticity, Differential Integral Equations, 31 (2018), no. 11–12, 851–870.

    MathSciNet  MATH  Google Scholar 

  17. T. Gotoda and T. Sakajo, Universality of the anomalous enstrophy dissipation at the collapse of three point vortices on Euler–Poincaré models, SIAM J. Appl. Math., 78(4) (2018), 2105–2128.

    MathSciNet  MATH  Google Scholar 

  18. D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler–Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 80 (1998), 4173–4177.

    Google Scholar 

  19. D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Maths., 137 (1998), 1–81.

    MATH  Google Scholar 

  20. D. D. Holm, M. Nitsche and V. Putkaradze, Euler-alpha and vortex blob regularization of vortex filament and vortex sheet motion, J. Fluid Mech., 555 (2006), 149–176.

    MathSciNet  MATH  Google Scholar 

  21. Y. Kimura, Similarity solution of two-dimensional point vortices. J. Phys. Soc. Japan., 56 (1987), 2024–2030.

    MathSciNet  Google Scholar 

  22. R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex approximation, J. Fluid Mech., 167 (1986), 65–93.

    MathSciNet  MATH  Google Scholar 

  23. R. Krasny, Desingularization of periodic vortex sheet roll-up, J. Comput. Phys., 65 (1986), 292–313.

    MATH  Google Scholar 

  24. R. Krasny, Computation of vortex sheet roll-up in the Trefftz plane, J. Fluid Mech., 184 (1987), 123–155.

    Google Scholar 

  25. J. G. Liu and Z. Xin, Convergence of vortex methods for weak solutions to the 2-D Euler equations with vortex sheet data, Comm. Pure Appl. Math., 48 (1995), 611–628.

    MathSciNet  MATH  Google Scholar 

  26. M. C. Lopes Filho, H. J. Nussenzveig Lopes and S. Schochet, A criterion for the equivalence of the Birkhoff–Rott and Euler descriptions of vortex sheet evolution, Trans. Amer. Math. Soc., 359 (2007), 4125–4142.

    MathSciNet  MATH  Google Scholar 

  27. E. Lunasin, S. Kurien, M. A. Taylor and E. S. Titi, A study of the Navier–Stokes-\(\alpha \) model for two-dimensional turbulence, J. Turbulence, 8 (2007), 1–21.

    MathSciNet  MATH  Google Scholar 

  28. A. J. Majda, Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Univ. Math. J., 42 (1993), 921–939.

    MathSciNet  MATH  Google Scholar 

  29. A. J. Majda and A. L. Bertozzi, Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002.

  30. C. Marchioro and M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, 96, Springer, New York (1994).

    MATH  Google Scholar 

  31. J. E. Marsden and S. Shkoller, The anisotropic Lagrangian averaged Euler and Navier–Stokes equations, Arch. Rat. Mech. Anal., 166 (2003), 27–46.

    MathSciNet  MATH  Google Scholar 

  32. F. J. McGrath, Nonstationary plane flow of viscous and ideal fluids, Arch. Rat. Mech. Anal., 27 (1968), 329–348.

    MathSciNet  MATH  Google Scholar 

  33. D. Meiron, G. Baker and S. Orszag, Analytic structure of vortex sheet dynamics I. Kelvin–Helmholtz instability, J. Fluid Mech., 114 (1982), 283–298.

    MathSciNet  MATH  Google Scholar 

  34. K. Mohseni, B. Kosović, S. Shkoller and J. E. Marsden, Numerical simulations of the Lagrangian averaged Navier–Stokes equations for homogeneous isotropic turbulence, Phys. Fluids, 15(2) (2003), 524–544.

    MathSciNet  MATH  Google Scholar 

  35. D. W. Moore, The spontaneous appearance of a singularity in the shape of an evolving vortex sheet, Proc. R. Soc. Lond. A, 365 (1979), 105–119.

    MathSciNet  MATH  Google Scholar 

  36. P. K. Newton, The N-Vortex Problem, Analytical Techniques, Analytical Techniques. Springer, New York (2001).

    MATH  Google Scholar 

  37. M. Nitsche and R. Krasny, A numerical study of vortex ring formation at the edge of a circular tube, J. Fluid Mech. 276 (1994), 139–161.

    MathSciNet  MATH  Google Scholar 

  38. M. Oliver and S. Shkoller, The vortex blob method as a second-grade non-Newtonian fluid, Comm. Partial Differential Equations, 26 (2001), 295–314.

    MathSciNet  MATH  Google Scholar 

  39. L. Rosenhead, The spread of vorticity in the wake behind a cylinder. Proc. Royal Soc. 127 (1930), 590–612.

    MATH  Google Scholar 

  40. N. Rott, Diffraction of a weak shock with vortex generation, J. Fluid Mech., 1 (1956), 111–128.

    MathSciNet  MATH  Google Scholar 

  41. S. Schochet, The weak vorticity formulation of the 2D Euler equations and concentration-cancellation, Comm. Partial Differential Equations, 20 (1995), no. 5–6. 1077–1104.

    MathSciNet  MATH  Google Scholar 

  42. S. Schochet, The point-vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math., 49(9) (1996), 911–965.

    MathSciNet  MATH  Google Scholar 

  43. S. Sulem, P.-L. Sulem, C, Sulemand U. Frisch, Finite time analyticity for the two and three dimensional Kelvin–Helmholtz instability, Comm. Math. Phys., 80(4) (1981), 485–516.

    MathSciNet  MATH  Google Scholar 

  44. V. I. Yudovich, Nonstationary motion of an ideal incompressible liquid, USSR Comp. Math. Phys., 3 (1963), 1407–1456.

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP19J00064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Gotoda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gotoda, T. Convergence of filtered weak solutions to the 2D Euler equations with measure-valued vorticity. J. Evol. Equ. 20, 1485–1509 (2020). https://doi.org/10.1007/s00028-020-00563-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-020-00563-4

Navigation