Skip to main content
Log in

Nonnegative weak solutions of thin-film equations related to viscous flows in cylindrical geometries

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Motivated by models for thin films coating cylinders in two physical cases proposed in Kerchman (J Fluid Mech 290:131–166, 1994) and Kerchman and Frenkel (Theor Comput Fluid Dyn 6:235–254, 1994), we analyze the dynamics of corresponding thin-film models. The models are governed by nonlinear, fourth-order, degenerate, parabolic PDEs. We prove, given positive and suitably regular initial data, the existence of weak solutions in all length scales of the cylinder, where all solutions are only local in time. We also prove that given a length constraint on the cylinder, long time and global in time weak solutions exist. This analytical result is motivated by numerical work on related models of Reed Ogrosky (Modeling liquid film flow inside a vertical tube, Ph.D. thesis, The University of North Carolina at Chapel Hill, 2013) in conjunction with the works (Camassa et al. in Phys Rev E 86(6):066305, 2012; Physica D Nonlinear Phenom 333:254–265, 2016; J Fluid Mech 745:682–715, 2014; J Fluid Mech 825:1056–1090, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.J. Benney, Long waves in liquid films, J. Math. Phys. 45 (1966), 150–155.

    Article  MathSciNet  Google Scholar 

  2. F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. of Diff. Eq. 83 (1990), 179–206.

    Article  MathSciNet  Google Scholar 

  3. B. Barker, M. Johnson, P. Noble, L.M. Rodrigues, and K. Zumbrun, Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto-Sivashinsky equation, Physica D: Nonlinear Phenomena 258 (2013), 11–46.

    Article  MathSciNet  Google Scholar 

  4. A.L. Bertozzi and M.C. Pugh, Long-wave instabilities and saturation in thin film equations, Communications on Pure and Applied Mathematics 51 (1998), no. 6, 625–661.

    Article  MathSciNet  Google Scholar 

  5. A.L. Bertozzi and M.C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J. 49 (2000), no. 4, 1323–1366.

    Article  MathSciNet  Google Scholar 

  6. Roberto Camassa, M Gregory Forest, Long Lee, H Reed Ogrosky, and Jeffrey Olander, Ring waves as a mass transport mechanism in air-driven core-annular flows, Physical Review E 86 (2012), no. 6, 066305.

    Article  Google Scholar 

  7. R. Camassa, J.L. Marzuola, H.R. Ogrosky, and N. Vaughn, Traveling waves for a model of gravity-driven film flows in cylindrical domains, Physica D: Nonlinear Phenomena 333 (2016), 254–265.

    Article  MathSciNet  Google Scholar 

  8. R. Camassa, H.R. Ogrosky, and J. Olander, Viscous film flow coating the interior of a vertical tube. part i. gravity-driven flow, J. Fluid Mech. 745 (2014), 682–715.

    Article  MathSciNet  Google Scholar 

  9. Roberto Camassa, H Reed Ogrosky, and Jeffrey Olander, Viscous film-flow coating the interior of a vertical tube. part 2. air-driven flow, Journal of Fluid Mechanics 825 (2017), 1056–1090.

    Article  MathSciNet  Google Scholar 

  10. M. Chugunova, M.C. Pugh, and R.M. Taranets, Nonnegative solutions for a long-wave unstable thin film equation with convection, J. of Math. Anal. 42 (2010), no. 4, 1826–1853.

    MathSciNet  MATH  Google Scholar 

  11. M. Chugunova and R.M. Taranets, Qualitative analysis of coating flows on a rotating horizontal cylinder, Inter. J. of Diff. Eq. 2012 (2012), no. Article ID 570283, 30 pages.

  12. M. Chugunova and R.M. Taranets, Blow-up with mass concentration for the long-wave unstable thin-film equation, Applicable Anal. 95 (2016), no. 5, 944–962.

    Article  MathSciNet  Google Scholar 

  13. S.D. Eidel’man, Parabolic systems, North-Holland Publishing Company and Wolters-Noordhoff Publishing, 1969.

  14. M. Eres and L. Schwartz, Modeling of coating flows on curved surfaces, J. Engrg. Math. 29 (1995), 91–103.

    Article  MathSciNet  Google Scholar 

  15. M. Eres, L. Schwartz, and D. Weidner, Simulation of coating layer evolution and drop formation on horizontal cylinders, J. Colloid Interface Sci. 187 (1997), 243–258.

    Article  Google Scholar 

  16. L. C. Evans, Partial differential equations, American Mathematical Society, 1998.

  17. A.L. Frenkel, Nonlinear theory of strongly undulating thin films flowing down vertical cylinders, Europhys. Lett. 18 (1992), 583–588.

    Article  Google Scholar 

  18. L. Giacomelli, A fourth-order degenerate parabolic equation describing thin viscous flows over an incline plane, Applied Math Letters 12 (1999), 107–111.

    Article  MathSciNet  Google Scholar 

  19. I. Györi, A generalisation of Bellman’s inequality for Stieltjes integrals and a uniqueness theorem, Studia. Sci. Math. Hungar. 6 (1971), 137–145.

    MathSciNet  MATH  Google Scholar 

  20. T. Hocherman and P. Rosenau, On KS-type equations describing the evolution and rupture of a liquid interface, Physica D: Nonlinear Phenomena 67 (193), 113–125.

  21. V.I. Kerchman, Strongly nonlinear interfacial dynamics in core-annular flows, J. Fluid Mech. 290 (1994), 131–166.

    Article  MathSciNet  Google Scholar 

  22. V.I. Kerchman and A.L. Frenkel, Interactions of coherent structures in a film flow: Simulations of a highly nonlinear evolution equation, Theoret. Comput. Fluid Dynamics 6 (1994), 235–254.

    Article  Google Scholar 

  23. S.P. Lin, Finite amplitude side-band stability of a viscous film, J. Fluid Mech. 63 (1974), 417–429.

    Article  Google Scholar 

  24. S.P. Lin and W.C. Liu, Instability of film coating of wires and tubes, AIChE 24 (1975), 775–782.

    Article  Google Scholar 

  25. A. Novick-Cohen, On Cahn-Hilliard type equations, Nonlinear Analysis: Theory, Methods & Applications 15 (1990), no. 9, 797–814.

    Article  MathSciNet  Google Scholar 

  26. H Reed Ogrosky, Modeling liquid film flow inside a vertical tube, Ph.D. thesis, The University of North Carolina at Chapel Hill, 2013.

  27. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in quasilinear parabolic equations, Walter de Gruyter and Co., 1995.

  28. R. Taranets, Propagation of perturbations in thin capillary film equations with nonlinear diffusion and convection, Sib. Math. J. 47 (2006), 751–766.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Roberto Camassa and Reed Ogrosky for many helpful conversations about this family of thin-film models. We also thank the reviewers for their interest, insight, and comments in critiquing the work during the review process. JLM and SRS were supported in part by the NSF through JLM’s NSF CAREER Grant DMS-1352353.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sterling R. Swygert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzuola, J.L., Swygert, S.R. & Taranets, R. Nonnegative weak solutions of thin-film equations related to viscous flows in cylindrical geometries. J. Evol. Equ. 20, 1227–1249 (2020). https://doi.org/10.1007/s00028-019-00553-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-019-00553-1

Navigation