Abstract
Existence and a priori estimates for real-valued periodic solutions to the modified Korteweg–de Vries equation with initial data in \(H^s\) are established for \(s>0\). The short-time Fourier restriction norm method is employed to overcome the derivative loss. Further, non-existence of solutions below \(L^2\) is proved conditional upon conjectured linear Strichartz estimates.
This is a preview of subscription content, access via your institution.
Notes
For the actually more involved energy estimate, see Sect. 6.
Strictly speaking, we had to consider \(f_{m,k_i}\) or \(f_{m,k_i,j_i}\), respectively, tracking the additional dependence on m. Since all the estimates below are uniform in m, we choose to drop dependence on m for the sake of brevity.
References
Abdelouhab, L., Bona, J.L., Felland, M., Saut, J.C.: Nonlocal models for nonlinear, dispersive waves. Phys. D 40(3), 360–392 (1989). https://doi.org/10.1016/0167-2789(89)90050-X.
Bona, J.L., Smith, R.: The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. 278(1287), 555–601 (1975). https://doi.org/10.1098/rsta.1975.0035.
Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3(2), 107–156 (1993). https://doi.org/10.1007/BF01896020.
Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal. 3(3), 209–262 (1993). https://doi.org/10.1007/BF01895688
Bourgain, J.: Periodic Korteweg de Vries equation with measures as initial data. Selecta Math. (N.S.) 3(2), 115–159 (1997). https://doi.org/10.1007/s000290050008.
Burq, N., Gérard, P., Tzvetkov, N.: An instability property of the nonlinear Schrödinger equation on \(S^d\). Math. Res. Lett. 9(2-3), 323–335 (2002). https://doi.org/10.4310/MRL.2002.v9.n3.a8.
Christ, M., Colliander, J., Tao, T.: Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math. 125(6), 1235–1293 (2003). URL http://muse.jhu.edu/journals/american_journal_of_mathematics/v125/125.6christ.pdf
Christ, M., Colliander, J., Tao, T.: A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order. J. Funct. Anal. 254(2), 368–395 (2008). https://doi.org/10.1016/j.jfa.2007.09.005
Christ, M., Holmer, J., Tataru, D.: Low regularity a priori bounds for the modified Korteweg-de Vries equation. Lib. Math. (N.S.) 32(1), 51–75 (2012). https://doi.org/10.14510/lm-ns.v32i1.32.
Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness for KdV and modified KdV on \({\mathbb{R}}\) and \({\mathbb{T}}\). J. Amer. Math. Soc. 16(3), 705–749 (2003). https://doi.org/10.1090/S0894-0347-03-00421-1
Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Multilinear estimates for periodic KdV equations, and applications. J. Funct. Anal. 211(1), 173–218 (2004). https://doi.org/10.1016/S0022-1236(03)00218-0.
Dinh, V.D.: Strichartz estimates for the fractional Schrödinger and wave equations on compact manifolds without boundary. J. Differential Equations 263(12), 8804–8837 (2017). https://doi.org/10.1016/j.jde.2017.08.045.
Guo, Z., Oh, T.: Non-existence of solutions for the periodic cubic NLS below \(L^2\). Int. Math. Res. Not. IMRN (6), 1656–1729 (2018). https://doi.org/10.1093/imrn/rnw271.
Hu, Y., Li, X.: Discrete Fourier restriction associated with KdV equations. Anal. PDE 6(4), 859–892 (2013). https://doi.org/10.2140/apde.2013.6.859.
Ionescu, A.D., Kenig, C.E., Tataru, D.: Global well-posedness of the KP-I initial-value problem in the energy space. Invent. Math. 173(2), 265–304 (2008). https://doi.org/10.1007/s00222-008-0115-0.
Kappeler, T., Molnar, J.C.: On the well-posedness of the defocusing mKdV equation below \(L^2\). SIAM J. Math. Anal. 49(3), 2191–2219 (2017). https://doi.org/10.1137/16M1096979.
Kappeler, T., Topalov, P.: Global well-posedness of mKdV in \(L^{2}({\mathbb{T}},{\mathbb{R}})\). Comm. Partial Differential Equations 30(1-3), 435–449 (2005). https://doi.org/10.1081/PDE-200050089.
Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46(4), 527–620 (1993). https://doi.org/10.1002/cpa.3160460405.
Killip, R., Vişan, M., Zhang, X.: Low regularity conservation laws for integrable PDE. Geom. Funct. Anal. 28(4), 1062–1090 (2018). https://doi.org/10.1007/s00039-018-0444-0.
Killip, R., Visan, M.: KdV is well-posed in \({H}^{-1}\). Ann. of Math. (2) 190(1), 249–305 (2019). https://doi.org/10.4007/annals.2019.190.1.4.
Koch, H., Tataru, D.: A priori bounds for the 1D cubic NLS in negative Sobolev spaces. Int. Math. Res. Not. IMRN (16), Art. ID rnm053, 36 (2007). https://doi.org/10.1093/imrn/rnm053.
Koch, H., Tzvetkov, N.: Nonlinear wave interactions for the Benjamin-Ono equation. Int. Math. Res. Not. (30), 1833–1847 (2005). https://doi.org/10.1155/IMRN.2005.1833.
Kwon, S., Oh, T.: On unconditional well-posedness of modified KdV. Int. Math. Res. Not. IMRN (15), 3509–3534 (2012). https://doi.org/10.1093/imrn/rnr156.
Miura, R.M.: Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Mathematical Phys. 9, 1202–1204 (1968). https://doi.org/10.1063/1.1664700.
Molinet, L.: Sharp ill-posedness results for the KdV and mKdV equations on the torus. Adv. Math. 230(4-6), 1895–1930 (2012). https://doi.org/10.1016/j.aim.2012.03.026.
Molinet, L., Pilod, D., Vento, S.: On unconditional well-posedness for the periodic modified Korteweg–de Vries equation. J. Math. Soc. Japan 71(1), 147–201 (2019). https://doi.org/10.2969/jmsj/76977697.
Nakanishi, K., Takaoka, H., Tsutsumi, Y.: Local well-posedness in low regularity of the mKdV equation with periodic boundary condition. Discrete Contin. Dyn. Syst. 28(4), 1635–1654 (2010). https://doi.org/10.3934/dcds.2010.28.1635.
Oh, T., Wang, Y.: Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces. Forum Math. Sigma 6, e5, 80 (2018). https://doi.org/10.1017/fms.2018.4.
Staffilani, G.: On solutions for periodic generalized KdV equations. Internat. Math. Res. Notices (18), 899–917 (1997). https://doi.org/10.1155/S1073792897000585.
Takaoka, H., Tsutsumi, Y.: Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition. Int. Math. Res. Not. (56), 3009–3040 (2004). https://doi.org/10.1155/S1073792804140555.
Tao, T.: Multilinear weighted convolution of \(L^2\)-functions, and applications to nonlinear dispersive equations. Amer. J. Math. 123(5), 839–908 (2001). URL http://muse.jhu.edu/journals/american_journal_of_mathematics/v123/123.5tao.pdf
Tao, T.: Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2006). https://doi.org/10.1090/cbms/106. Local and global analysis
Acknowledgements
Financial support by the German Science Foundation (IRTG 2235) is gratefully acknowledged. I would like to thank the anonymous referee for a careful reading and commenting on an earlier manuscript, which significantly improved the presentation.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Schippa, R. On the existence of periodic solutions to the modified Korteweg–de Vries equation below \(H^{1/2}({\mathbb {T}})\). J. Evol. Equ. 20, 725–776 (2020). https://doi.org/10.1007/s00028-019-00538-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00028-019-00538-0
Keywords
- Dispersive equations
- Modified Korteweg–de Vries equation
- Existence of solutions
- Short-time Fourier restriction norm method
Mathematics Subject Classification
- 35Q53
- 42B37