Overdamped limit of generalized stochastic Hamiltonian systems for singular interaction potentials


First, weak solutions of generalized stochastic Hamiltonian systems (gsHs) are constructed via essential m-dissipativity of their generators on a suitable core. For a scaled gsHs we prove convergence of the corresponding semigroups and tightness of the weak solutions. This yields convergence in law of the scaled gsHs to a distorted Brownian motion. In particular, the results confirm the convergence of the Langevin dynamics in the overdamped regime to the overdamped Langevin equation. The proofs work for a large class of (singular) interaction potentials including, e.g. potentials of Lennard-Jones type.

This is a preview of subscription content, access via your institution.


  1. 1.

    R. Adams and J. Fournier. Sobolev spaces. Academic Press, Amsterdam, 2. ed., repr. edition, 2008.

    Google Scholar 

  2. 2.

    L. Beznea, N. Boboc, and M. Röckner. Markov processes associated with \(L^p\)-resolvents and applications to stochastic differential equations on Hilbert space. J. Evol. Equ., 6(4):745–772, 2006.

    MathSciNet  Article  Google Scholar 

  3. 3.

    D. Cohn. Measure theory. Birkhaeuser, Boston, 1980.

    Book  Google Scholar 

  4. 4.

    F. Conrad. Construction and analysis of langevin dynamics in continuous particle systems. PhD thesis, Technische Universität Kaiserslautern, 2010.

  5. 5.

    F. Conrad and M. Grothaus. Construction of \(N\)-particle langevin dynamics for \(H^{1,\infty }\)-potentials via generalized Dirichlet forms. Potential Anal., 28(3):261–282, 2008.

    MathSciNet  Article  Google Scholar 

  6. 6.

    F. Conrad and M. Grothaus. Construction, ergodicity and rate of convergence of \(N\)-particle Langevin dynamics with singular potentials. Journal of Evolution Equations, 10(3):623–662, 2010.

    MathSciNet  Article  Google Scholar 

  7. 7.

    E. Davies. One-parameter semigroups. Academic Press, London, 1980.

    MATH  Google Scholar 

  8. 8.

    A. Eberle. Uniqueness and Non-Uniqueness of Semigroups Generated by Singular Diffusion Operators. Springer, Heidelberg, 1999.

    Book  Google Scholar 

  9. 9.

    S. Ethier and T. Kurtz. Markov processes characterization and convergence. Wiley, New York, 1986.

    Book  Google Scholar 

  10. 10.

    L. Evans. Partial Differential Equations. American Mathematical Society, Providence, 2010.

    MATH  Google Scholar 

  11. 11.

    M. Freidlin. Some remarks on the Smoluchowski-Kramers approximation. J. Statist. Phys., 117(3-4):617–634, 2004.

    MathSciNet  Article  Google Scholar 

  12. 12.

    J. Goldstein. Semigroups of linear operators and applications. Oxford University Press, New York, 1985.

    MATH  Google Scholar 

  13. 13.

    M. Grothaus and P. Stilgenbauer. A hypocoercivity related ergodicity method for singularly distorted non-symmetric diffusions. Integral equations and operator theory, 83(3):331–379, 2015.

    MathSciNet  Article  Google Scholar 

  14. 14.

    M. Grothaus and F. Wang. Weak Poincaré Inequalities for Convergence Rate of Degenerate Diffusion Processes. Ann. Probab. (to appear), 2019. arXiv:1703.04821

  15. 15.

    D. Herzog, S. Hottovy, and G. Volpe. The small-mass limit for Langevin dynamics with unbounded coefficients and positive friction. J. Stat. Phys., 163(3):659–673, 2016.

    MathSciNet  Article  Google Scholar 

  16. 16.

    S. Hottovy, A. McDaniel, G. Volpe, and J. Wehr. The Smoluchowski-Kramers limit of stochastic differential equations with arbitrary state-dependent friction. Comm. Math. Phys., 336(3):1259–1283, 2015.

    MathSciNet  Article  Google Scholar 

  17. 17.

    I. Karatzas and S. Shreve. Brownian motion and stochastic calculus. Springer, New York, springer study ed., 2. ed., corr. 8. print. edition, 2005.

  18. 18.

    N.V. Krylov and Michael Röckner. Strong solutions of stochastic equations with singular time dependent drift. Probability Theory and Related Fields, 131(2):154–196, 2005.

    MathSciNet  Article  Google Scholar 

  19. 19.

    K. Kuwae and T. Shioya. Convergence of spectral structures: A functional analytic theory and its applications to spectral geometry. Communications in analysis and geometry, 11(4):599–674, 2003.

    MathSciNet  Article  Google Scholar 

  20. 20.

    Z. Ma and M. Röckner. Introduction to the theory of (non-symmetric) Dirichlet forms. Springer, Berlin, 1992.

    Book  Google Scholar 

  21. 21.

    V. Nabiullin. Convergence of the langevin dynamics to a distorted Brownian motion in the small velocity limit - an operator semigroup approach. Masters Thesis, Technische Universität Kaiserslautern, 2014.

  22. 22.

    G. Pavliotis. Stochastic Processes and Applications Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, Heidelberg, 2014.

    Book  Google Scholar 

  23. 23.

    M. Rousset, Y. Xu, and P. Zitt. A weak overdamped limit theorem for langevin processes. 2017. arXiv:1709.09866

  24. 24.

    J. Tölle. Convergence of non-symmetric forms with changing reference measures. 2006. https://bibos.math.uni-bielefeld.de/preprints/E06-09-234.pdf

Download references


The second author thanks the department of Mathematics at the University of Kaiserslautern for financial support in the form of a fellowship.

Author information



Corresponding author

Correspondence to Andreas Nonnenmacher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grothaus, M., Nonnenmacher, A. Overdamped limit of generalized stochastic Hamiltonian systems for singular interaction potentials. J. Evol. Equ. 20, 577–605 (2020). https://doi.org/10.1007/s00028-019-00530-8

Download citation


  • Markov semigroups
  • Langevin equations
  • Overdamped limit
  • Distorted Brownian motion
  • Semigroup convergence on varying spaces

Mathematics Subject Classification

  • 47D07
  • 60B12
  • 82C31