Abstract
For a class of Laplace exponents, we consider the transition density of the subordinator and the heat kernel of the corresponding subordinate Brownian motion. We derive explicit approximate expressions for these objects in the form of asymptotic expansions: via the saddle point method for the subordinator’s transition density and via the Mellin transform for the subordinate heat kernel. The latter builds on ideas from index theory using zeta functions. In either case, we highlight the role played by the analyticity of the Laplace exponent for the qualitative properties of the asymptotics.
References
D. Applebaum. Lévy Processes and Stochastic Calculus, volume 116 of Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge, second edition, 2009.
M. F. Atiyah. The heat equation in Riemannian geometry (after Patodi, Gilkey, etc.). In Séminaire Bourbaki, Vol. 1973/1974, 26ème année, Exp. No. 436, volume 431 of Lecture Notes in Math., pages 1–11. Springer, Berlin, 1975.
M.T. Barlow, A. Grigor’yan, and T. Kumagai. Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math., 626:135–157, 2009.
O.E. Barndorff-Nielsen, T. Mikosch, and S.I. Resnick, editors. Lévy Processes: Theory and Applications. 2001. Birkhäuser, Boston, 2001.
N. Berline, E. Getzler, and M. Vergne. Heat kernels and Dirac operators. Grundlehren Text Editions. Springer-Verlag, Berlin, 2004.
J. Bertoin. Lévy Processes, volume 121 of Cambridge Tracts in Math. Cambridge University Press, Cambridge, 1998.
N.H. Bingham, C.M. Goldie, and J.L. Teugels. Regular Variation, volume 27 of Encyclopedia Math. Appl. Cambridge University Press, Cambridge, 1989.
N. Bleistein and R.A. Handelsman. Asymptotic Expansions of Integrals. Dover, New York, 1986.
S.I. Boyarchenko and S.Z. Levendorskiĭ. Non-Gaussian Merton-Black-Scholes theory, volume 9 of Adv. Ser. Stat. Sci. Appl. Probab. World Scientific, River Edge, NJ, 2002.
O. Calin, D.-C. Chang, K. Furutani, and C. Iwasaki. Heat Kernels for Elliptic and Sub-Elliptic Operators. Methods and Techniques. Appl. Numer. Harmon. Anal. Birkhäuser, New York, 2011.
E. A. Carlen, S. Kusuoka, and D.W. Stroock. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist., 23(2, suppl.):245–287, 1987.
Z.-Q. Chen. Symmetric jump processes and their heat kernel estimates. Sci. China (Ser. A), 52(7):1423–1445, 2009.
Z.-Q. Chen, P. Kim, and T. Kumagai. Global heat kernel estimates for symmetric jump processes. Trans. Amer. Math. Soc., 363(9):5021–5055, 2011.
Z.-Q. Chen, P. Kim, and R. Song. Sharp heat kernel estimates for relativistic stable processes in open sets. Ann. Probab., 40(1):213–244, 2012.
Z.-Q. Chen and T. Kumagai. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields, 140(1-2):277–317, 2008.
R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004.
E.T. Copson. Asymptotic Expansions, volume 55 of Cambridge Tracts in Math. Cambridge University Press, Cambridge, 1965.
E.B. Davies. Heat Kernels and Spectral Theory, volume 92 of Cambridge Tracts in Math. Cambridge University Press, 1990.
A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi. Tables of Integral Transforms. Vol. I. McGraw-Hill, New York, 1954.
M.A. Fahrenwaldt. Heat trace asymptotics of subordinate Brownian motion on Euclidean space. Potential Anal., 44:331–354, 2016.
M.A. Fahrenwaldt. Off-diagonal heat kernel asymptotics of pseudodifferential operators on closed manifolds and subordinate Brownian motion. Integral Equations Operator Theory, 87:327–347, 2017.
P.B. Gilkey. Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem. CRC Press, Boca Raton , 1995.
A. Grigor’yan. Heat Kernel and Analysis on Manifolds, volume 47 of AMS/IP Stud. Adv. Math. Amer. Math. Soc., Providence, RI, 2012.
G. Grubb and R.T. Seeley. Zeta and eta functions for Atiyah-Patodi-Singer operators. J. Geom. Anal., 6(1):31–77, 1996.
P. Hartman and A. Wintner. On the infinitesimal generators of integral convolutions. Amer. J. Math., 64:273–298, 1942.
E.J. Hinch. Perturbation Methods. Cambridge Texts Appl. Math. Cambridge University Press, Cambridge, 1991.
L. Hörmander. The Analysis of Linear Partial Differential Operators. I, volume 256 of Grundlehren Math. Wiss. Springer-Verlag, Berlin, second edition, 1990.
N.C. Jain and W.E. Pruitt. Lower tail probability estimates for subordinators and nondecreasing random walks. Ann. Probab., 15(1):75–101, 1987.
J. Jorgenson and S. Lang. The ubiquitous heat kernel. In Mathematics unlimited—2001 and beyond, pages 655–683. Springer, Berlin, 2001.
J. Jorgenson and L. Walling, editors. The ubiquitous heat kernel, volume 398 of Contemporary Mathematics. Amer. Math. Soc., Providence, RI, 2006. Papers from a special session of the AMS Meeting held in Boulder, CO, October 2–4, 2003.
V. Knopova and A.M. Kulik. Exact asymptotic for distribution densities of Lévy functionals. Electron. J. Probab., 16(52):1394–1433, 2011.
V. Knopova and R.L. Schilling. Transition density estimates for a class of Lévy and Lévy-type processes. J. Theoret. Probab., 25(1):144–170, 2012.
H.P. McKean, Jr. and I.M. Singer. Curvature and the eigenvalues of the Laplacian. J. Differential Geometry, 1(1):43–69, 1967.
A. Mimica. Heat kernel estimates for subordinate Brownian motions. Proc. Lond. Math. Soc. (3), 113(5):627–648, 2016.
R. Remmert. Classical Topics in Complex Function Theory, volume 172 of Grad. Texts in Math. Springer-Verlag, New York, 1997.
R.L. Schilling. Subordination in the sense of Bochner and a related functional calculus. J. Austral. Math. Soc. Ser. A, 64(3):368–396, 1998.
R.L. Schilling, R. Song, and Z. Vondracek. Bernstein Functions: Theory and Applications, volume 37 of Studies in Mathematics. Walter de Gruyter, Berlin, second edition, 2012.
M.A. Shubin. Pseudodifferential Operators and Spectral Theory. Springer-Verlag, Berlin, 2001.
R. Song and Z. Vondraček. Potential theory of subordinate Brownian Motion. In P. Graczyk and A. Stos, editors, Potential Analysis of Stable Processes and its Extensions, volume 180 of Lecture Notes in Math., pages 87–176. Springer-Verlag, New York, 2009.
M.E. Taylor. Partial Differential Equations I. Basic theory, volume 115 of Appl. Math. Sci. Springer, New York, second edition, 2011.
E.C. Titchmarsh. Introduction to the Theory of Fourier Integrals. Clarendon Press Oxford, 1948.
D.V. Vassilevich. Heat kernel expansion: user’s manual. Phys. Rep., 388(5-6):279–360, 2003.
M. Vuilleumier. Slowly varying functions in the complex plane. Trans. Amer. Math. Soc., 218:343–348, 1976.
G.N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge Math. Lib. Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition.
R. Wong. Asymptotic Approximations of Integrals, volume 34 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Corrected reprint of the 1989 original.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Fahrenwaldt, M.A. Heat kernel asymptotics of the subordinator and subordinate Brownian motion. J. Evol. Equ. 19, 33–70 (2019). https://doi.org/10.1007/s00028-018-0468-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00028-018-0468-9
Keywords
- Heat kernel
- Subordinate Brownian motion
- Asymptotic analysis
- Mellin transform
- Zeta function
Mathematics Subject Classification
- 35K08
- 60J55
- 41A60