Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of Evolution Equations
  3. Article
Heat kernel asymptotics of the subordinator and subordinate Brownian motion
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Spectral Heat Content for Time-Changed Killed Brownian Motions

15 July 2022

Kei Kobayashi & Hyunchul Park

Heat Kernel for Liouville Brownian Motion and Liouville Graph Distance

15 May 2019

Jian Ding, Ofer Zeitouni & Fuxi Zhang

On the Boundary Theory of Subordinate Killed Lévy Processes

18 January 2019

Panki Kim, Renming Song & Zoran Vondraček

Asymptotics of Intersection Local Time for Diffusion Processes

01 October 2019

Andrey Dorogovtsev & Olga Izyumtseva

Integration with Respect to the Hermitian Fractional Brownian Motion

30 August 2018

Aurélien Deya

Quantum $$ SL _2$$ S L 2 , infinite curvature and Pitman’s 2M-X theorem

20 November 2020

François Chapon & Reda Chhaibi

Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature

20 October 2021

Martin Kolb, Tobias Weich & Lasse L. Wolf

On the Law of Large Numbers for the Empirical Measure Process of Generalized Dyson Brownian Motion

21 September 2020

Songzi Li, Xiang-Dong Li & Yong-Xiao Xie

Crossing an Asymptotically Square-Root Boundary by the Brownian Motion

01 March 2022

Denis E. Denisov, Günter Hinrichs, … Vitali I. Wachtel

Download PDF
  • Open Access
  • Published: 05 September 2018

Heat kernel asymptotics of the subordinator and subordinate Brownian motion

  • M. A. Fahrenwaldt1 

Journal of Evolution Equations volume 19, pages 33–70 (2019)Cite this article

  • 411 Accesses

  • 1 Citations

  • Metrics details

Abstract

For a class of Laplace exponents, we consider the transition density of the subordinator and the heat kernel of the corresponding subordinate Brownian motion. We derive explicit approximate expressions for these objects in the form of asymptotic expansions: via the saddle point method for the subordinator’s transition density and via the Mellin transform for the subordinate heat kernel. The latter builds on ideas from index theory using zeta functions. In either case, we highlight the role played by the analyticity of the Laplace exponent for the qualitative properties of the asymptotics.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D. Applebaum. Lévy Processes and Stochastic Calculus, volume 116 of Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge, second edition, 2009.

  2. M. F. Atiyah. The heat equation in Riemannian geometry (after Patodi, Gilkey, etc.). In Séminaire Bourbaki, Vol. 1973/1974, 26ème année, Exp. No. 436, volume 431 of Lecture Notes in Math., pages 1–11. Springer, Berlin, 1975.

  3. M.T. Barlow, A. Grigor’yan, and T. Kumagai. Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math., 626:135–157, 2009.

    MathSciNet  MATH  Google Scholar 

  4. O.E. Barndorff-Nielsen, T. Mikosch, and S.I. Resnick, editors. Lévy Processes: Theory and Applications. 2001. Birkhäuser, Boston, 2001.

  5. N. Berline, E. Getzler, and M. Vergne. Heat kernels and Dirac operators. Grundlehren Text Editions. Springer-Verlag, Berlin, 2004.

    MATH  Google Scholar 

  6. J. Bertoin. Lévy Processes, volume 121 of Cambridge Tracts in Math. Cambridge University Press, Cambridge, 1998.

  7. N.H. Bingham, C.M. Goldie, and J.L. Teugels. Regular Variation, volume 27 of Encyclopedia Math. Appl. Cambridge University Press, Cambridge, 1989.

  8. N. Bleistein and R.A. Handelsman. Asymptotic Expansions of Integrals. Dover, New York, 1986.

    MATH  Google Scholar 

  9. S.I. Boyarchenko and S.Z. Levendorskiĭ. Non-Gaussian Merton-Black-Scholes theory, volume 9 of Adv. Ser. Stat. Sci. Appl. Probab. World Scientific, River Edge, NJ, 2002.

  10. O. Calin, D.-C. Chang, K. Furutani, and C. Iwasaki. Heat Kernels for Elliptic and Sub-Elliptic Operators. Methods and Techniques. Appl. Numer. Harmon. Anal. Birkhäuser, New York, 2011.

  11. E. A. Carlen, S. Kusuoka, and D.W. Stroock. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist., 23(2, suppl.):245–287, 1987.

  12. Z.-Q. Chen. Symmetric jump processes and their heat kernel estimates. Sci. China (Ser. A), 52(7):1423–1445, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  13. Z.-Q. Chen, P. Kim, and T. Kumagai. Global heat kernel estimates for symmetric jump processes. Trans. Amer. Math. Soc., 363(9):5021–5055, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  14. Z.-Q. Chen, P. Kim, and R. Song. Sharp heat kernel estimates for relativistic stable processes in open sets. Ann. Probab., 40(1):213–244, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  15. Z.-Q. Chen and T. Kumagai. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields, 140(1-2):277–317, 2008.

    MathSciNet  MATH  Google Scholar 

  16. R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004.

    MATH  Google Scholar 

  17. E.T. Copson. Asymptotic Expansions, volume 55 of Cambridge Tracts in Math. Cambridge University Press, Cambridge, 1965.

  18. E.B. Davies. Heat Kernels and Spectral Theory, volume 92 of Cambridge Tracts in Math. Cambridge University Press, 1990.

  19. A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi. Tables of Integral Transforms. Vol. I. McGraw-Hill, New York, 1954.

    MATH  Google Scholar 

  20. M.A. Fahrenwaldt. Heat trace asymptotics of subordinate Brownian motion on Euclidean space. Potential Anal., 44:331–354, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  21. M.A. Fahrenwaldt. Off-diagonal heat kernel asymptotics of pseudodifferential operators on closed manifolds and subordinate Brownian motion. Integral Equations Operator Theory, 87:327–347, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  22. P.B. Gilkey. Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem. CRC Press, Boca Raton , 1995.

    MATH  Google Scholar 

  23. A. Grigor’yan. Heat Kernel and Analysis on Manifolds, volume 47 of AMS/IP Stud. Adv. Math. Amer. Math. Soc., Providence, RI, 2012.

  24. G. Grubb and R.T. Seeley. Zeta and eta functions for Atiyah-Patodi-Singer operators. J. Geom. Anal., 6(1):31–77, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Hartman and A. Wintner. On the infinitesimal generators of integral convolutions. Amer. J. Math., 64:273–298, 1942.

    Article  MathSciNet  MATH  Google Scholar 

  26. E.J. Hinch. Perturbation Methods. Cambridge Texts Appl. Math. Cambridge University Press, Cambridge, 1991.

    Book  MATH  Google Scholar 

  27. L. Hörmander. The Analysis of Linear Partial Differential Operators. I, volume 256 of Grundlehren Math. Wiss. Springer-Verlag, Berlin, second edition, 1990.

  28. N.C. Jain and W.E. Pruitt. Lower tail probability estimates for subordinators and nondecreasing random walks. Ann. Probab., 15(1):75–101, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Jorgenson and S. Lang. The ubiquitous heat kernel. In Mathematics unlimited—2001 and beyond, pages 655–683. Springer, Berlin, 2001.

  30. J. Jorgenson and L. Walling, editors. The ubiquitous heat kernel, volume 398 of Contemporary Mathematics. Amer. Math. Soc., Providence, RI, 2006. Papers from a special session of the AMS Meeting held in Boulder, CO, October 2–4, 2003.

  31. V. Knopova and A.M. Kulik. Exact asymptotic for distribution densities of Lévy functionals. Electron. J. Probab., 16(52):1394–1433, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  32. V. Knopova and R.L. Schilling. Transition density estimates for a class of Lévy and Lévy-type processes. J. Theoret. Probab., 25(1):144–170, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  33. H.P. McKean, Jr. and I.M. Singer. Curvature and the eigenvalues of the Laplacian. J. Differential Geometry, 1(1):43–69, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Mimica. Heat kernel estimates for subordinate Brownian motions. Proc. Lond. Math. Soc. (3), 113(5):627–648, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Remmert. Classical Topics in Complex Function Theory, volume 172 of Grad. Texts in Math. Springer-Verlag, New York, 1997.

  36. R.L. Schilling. Subordination in the sense of Bochner and a related functional calculus. J. Austral. Math. Soc. Ser. A, 64(3):368–396, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  37. R.L. Schilling, R. Song, and Z. Vondracek. Bernstein Functions: Theory and Applications, volume 37 of Studies in Mathematics. Walter de Gruyter, Berlin, second edition, 2012.

  38. M.A. Shubin. Pseudodifferential Operators and Spectral Theory. Springer-Verlag, Berlin, 2001.

    Book  MATH  Google Scholar 

  39. R. Song and Z. Vondraček. Potential theory of subordinate Brownian Motion. In P. Graczyk and A. Stos, editors, Potential Analysis of Stable Processes and its Extensions, volume 180 of Lecture Notes in Math., pages 87–176. Springer-Verlag, New York, 2009.

  40. M.E. Taylor. Partial Differential Equations I. Basic theory, volume 115 of Appl. Math. Sci. Springer, New York, second edition, 2011.

  41. E.C. Titchmarsh. Introduction to the Theory of Fourier Integrals. Clarendon Press Oxford, 1948.

    Google Scholar 

  42. D.V. Vassilevich. Heat kernel expansion: user’s manual. Phys. Rep., 388(5-6):279–360, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Vuilleumier. Slowly varying functions in the complex plane. Trans. Amer. Math. Soc., 218:343–348, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  44. G.N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge Math. Lib. Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition.

  45. R. Wong. Asymptotic Approximations of Integrals, volume 34 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Corrected reprint of the 1989 original.

Download references

Author information

Authors and Affiliations

  1. Department of Actuarial Mathematics and Statistics, Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK

    M. A. Fahrenwaldt

Authors
  1. M. A. Fahrenwaldt
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to M. A. Fahrenwaldt.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahrenwaldt, M.A. Heat kernel asymptotics of the subordinator and subordinate Brownian motion. J. Evol. Equ. 19, 33–70 (2019). https://doi.org/10.1007/s00028-018-0468-9

Download citation

  • Published: 05 September 2018

  • Issue Date: 08 March 2019

  • DOI: https://doi.org/10.1007/s00028-018-0468-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Heat kernel
  • Subordinate Brownian motion
  • Asymptotic analysis
  • Mellin transform
  • Zeta function

Mathematics Subject Classification

  • 35K08
  • 60J55
  • 41A60
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.