Skip to main content
Log in

Blowup criteria in terms of pressure for the 3D nonlinear dissipative system modeling electro-diffusion

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider some sufficient conditions for the breakdown of local smooth solutions to the Cauchy problem of the 3D Navier–Stokes/Poisson–Nernst–Planck system modeling electro-diffusion in terms of pressure (or gradient of pressure or one directional derivative of pressure) in the framework of the anisotropic Lebesgue spaces. Precisely, let T be the maximum existence time of local smooth solution. Then if \(T<+\infty \), we have

$$\begin{aligned} \int _{0}^{T}\left\| \left\| \left\| P\right\| _{L^{p}_{x_{1}}} \right\| _{L^{q}_{x_{2}}} \right\| _{L^{r}_{x_{3}}}^{\beta }\text {d}t=+\infty , \end{aligned}$$

where \(\frac{2}{\beta }+\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=2\), \(2\le p,q,r\le \infty \) and \(1-(\frac{1}{p}+\frac{1}{q}+\frac{1}{r})\ge 0\), and

$$\begin{aligned} \int _{0}^{T}\left\| \left\| \left\| \nabla P\right\| _{L^{p}_{x_{1}}}\right\| _{L^{q}_{x_{2}}} \right\| _{L^{r}_{x_{3}}}^{\beta }\text {d}t=+\infty , \end{aligned}$$

where \(\frac{2}{\beta }+\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=3\), \(1\le p,q,r\le \infty \) and \(2-(\frac{1}{p}+\frac{1}{q}+\frac{1}{r})\ge 0\), and

$$\begin{aligned} \int _{0}^{T}\left\| \Vert \partial _{3}P\Vert _{L^{\gamma }_{x_{3}}} \right\| _{L^{\alpha }_{x_{1}x_{2}}}^{\beta }\text {d}t=+\infty , \end{aligned}$$

where \(\frac{2}{\beta }+\frac{1}{\gamma }+\frac{2}{\alpha }=k\in [2,3)\) and \(\frac{3}{k}\le \gamma \le \alpha < \frac{1}{k-2}\). These results are even new for the 3D incompressible Navier–Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balbuena P. B., Wang Y.: Lithium-ion Batteries, Solid-electrolyte Interphase. Imperial College Press (2004)

  2. Beirão da Veiga H.: A new regularity class for the Navier–Stokes equations in \({\mathbb{R}}^{n}\). Chin. Ann. Math. Series B 16, 407–412 (1995)

  3. Berselli L. C., Galdi G. P.: Regularity criteria involving the pressure for the weak solutions of the Navier–Stokes equations. Proc. Amer. Math. Soc. 130, 3585–3595 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bothe D., Fischer A., Saal J.: Global well-posedness and stability of electrokinetic flows. SIAM J. Math. Anal. 46(2), 1263–1316 (2014)

    Article  MathSciNet  Google Scholar 

  5. Caffarelli L., Kohn J., Nirenberg L.: Partial regularity for suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  MathSciNet  Google Scholar 

  6. Cao C., Titi E.: Global regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor. Arch. Rational Mech. Anal. 202, 919–932 (2011)

    Article  MathSciNet  Google Scholar 

  7. Cao C., Titi E.: Regularity criteria for the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 57, 2643–2661 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chae D., Lee J.: Regularity criterion in terms if pressure for the Navier–Stokes equations. Nonlinear Anal. 46, 727–735 (2001)

    Article  MathSciNet  Google Scholar 

  9. Chen Q., Zhang Z.: Regularity criterion via the pressure on weak solutions to the 3D Navier–Stokes equations. Proc. Amer. Math. Soc. 135(6), 1829–1837 (2007)

    Article  MathSciNet  Google Scholar 

  10. Deng C., Zhao J., Cui S.: Well-posedness for the Navier–Stokes–Nernst–Planck–Poisson system in Triebel–Lizorkin space and Besov space with negative indices. J. Math. Anal. Appl. 377, 392–405 (2011)

    Article  MathSciNet  Google Scholar 

  11. Deng C., Liu C.: Largest well-posed spaces for the general diffusion system with nonlocal interactions. J. Functional Anal. 272, 4030–4062 (2017)

    Article  MathSciNet  Google Scholar 

  12. Escauriaza L., Seregin G., Šverák V.: \(L_{3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk. 58, 3–44 (2003)

    Article  MathSciNet  Google Scholar 

  13. Fan J., Gao H.: Uniqueness of weak solutions to a nonlinear hyperbolic system in electrohydrodynamics. Nonlinear Anal. 70, 2382–2386 (2009)

    Article  MathSciNet  Google Scholar 

  14. Fan J., Jiang S., Nakamura G., Zhou Y.: Logarithmically improved regularity criteria for the Navier–Stokes and MHD equations. J. Math. Fluid Mech. 13(4), 557–571 (2011)

    Article  MathSciNet  Google Scholar 

  15. Fan J., Jiang S., Ni G.: On regularity criteria for the n-dimensional Navier–Stokes equations in terms of the pressure. J. Differential Equations 244, 2936–2979 (2008)

    Article  MathSciNet  Google Scholar 

  16. Fan J., Nakamura G., Zhou Y.: On the Cauchy problem for a model of electro-kinetic fluid. Applied Mathematics Letters 25, 33–37 (2012)

    Article  MathSciNet  Google Scholar 

  17. Fischer A., Saal J.: Global weak solutions in three space dimensions for electrokinetic flow processes. J. Evol. Equ. 17(1), 309–333 (2017)

    Article  MathSciNet  Google Scholar 

  18. Giga Y.: Solutions for semilinear parabolic equations in \(L^{p}\) and regularity of weak solutions of the Navier–Stokes system. J. Differential Equations 61, 186–212 (1986)

    Article  Google Scholar 

  19. Hopf E.: Über die anfangswertaufgabe für die hydrodynamischen grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MathSciNet  Google Scholar 

  20. Jerome J. W.: Analytical approaches to charge transport in a moving medium. Tran. Theo. Stat. Phys. 31, 333–366 (2002)

    Article  MathSciNet  Google Scholar 

  21. Jerome J. W.: The steady boundary value problem for charged incompressible fluids: PNP/Navier–Stokes systems. Nonlinear Anal. 74, 7486–7498 (2011)

    Article  MathSciNet  Google Scholar 

  22. Jerome J. W., Sacco R.: Global weak solutions for an incompressible charged fluid with multi-scale couplings: Initial-boundary-value problem. Nonlinear Anal. 71, 2487–2497 (2009)

    Article  MathSciNet  Google Scholar 

  23. Kato T., Ponce G.: Commutator estimates and the Euler and Navier–Stokes equations. Comm. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  24. Lemarié-Rieusset P. G.: Recent developments in the Navier–Stokes problem. Chapman and Hall/CRC (2002)

  25. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  26. Prodi G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)

    Article  MathSciNet  Google Scholar 

  27. Qian C.: A generalized regularity criterion for 3D Naiver–Stokes equations in terms of one velocity component. J. Differential Equations 260, 3477–3494 (2016)

    Article  MathSciNet  Google Scholar 

  28. Rubinstein I.: Electro-Diffusion of Ions. SIAM Studies in Applied Mathematics, SIAM, Philadelphia (1990)

    Book  Google Scholar 

  29. Ryham R. J.: Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electrohydrodynamics. Analysis of PDEs. arXiv:0910.4973v1, 1–60 (2009)

  30. Ryham R. J., Liu C., Zikatanov L.: Mathematical models for the deformation of electrolyte droplets. Discrete Contin. Dyn. Syst. Ser. B 8(3), 649–661 (2007)

    Article  MathSciNet  Google Scholar 

  31. Scheffer V.: Partial regulaity of solutions to the Navier–Stokes equations. Pacific J. Math. 66, 535–552 (1976)

    Article  MathSciNet  Google Scholar 

  32. Scheffer V.: Hausdorff measure and the Navier–Stokes equations. Comm. Math. Phys. 55, 97–112 (1977)

    Article  MathSciNet  Google Scholar 

  33. Schmuck M.: Analysis of the Navier–Stokes–Nernst–Planck–Poisson system. Math. Models Methods Appl. Sci. 19(6), 993–1015 (2009)

    Article  MathSciNet  Google Scholar 

  34. Serrin J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  Google Scholar 

  35. Struwe M.: On a Serrin-type regularity criterion for the Navier–Stokes equations in terms of the pressure. J. Math. Fluid Mech. 9, 235–242 (2007)

    Article  MathSciNet  Google Scholar 

  36. Zhang Z., Yin Z.: Global well-posedness for the Navier–Stokes–Nernst–Planck–Poisson system in dimension two. Applied Mathematics Letters 40, 102–106 (2015)

    Article  MathSciNet  Google Scholar 

  37. Zhao J., Bai M.: Blow-up criteria for the three dimensional nonlinear dissipative system modeling electro-hydrodynamics. Nonlinear Analysis: Real World Applications 31, 210–226 (2016)

    Article  MathSciNet  Google Scholar 

  38. Zhao J., Deng C., Cui S.: Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces. J. Math. Physics 51, 093101 (2010)

    Article  MathSciNet  Google Scholar 

  39. Zhao J., Liu Q.: Well-posedness and decay for the dissipative system modeling electro-hydrodynamics in negative Besov spaces. J. Differential Equations 263, 1293–1322 (2017)

    Article  MathSciNet  Google Scholar 

  40. Zhao J., Zhang T., Liu Q.: Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete Contin. Dyn. Syst. 35(1), 555–582 (2015)

    Article  MathSciNet  Google Scholar 

  41. Zhou Y.: On regularity criteria in terms of pressure for the Navier–Stokes equations in \({\mathbb{R}}^{3}\). Proc. Amer. Math. Soc. 134, 149–156 (2005)

    Article  Google Scholar 

  42. Zhou Y.: On a regularity criterion in terms of the gradient of pressure for the Navier–Stokes equations in \({\mathbb{R}}^{N}\). Z. Angew. Math. Phys. 57, 384–392 (2006)

    Article  MathSciNet  Google Scholar 

  43. Zhou Y., Pokorný M.: On the regularity of the solutions of the Navier–Stokes equations via one velocity component. Nonlinearity 23, 1097–1107 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhao, J. Blowup criteria in terms of pressure for the 3D nonlinear dissipative system modeling electro-diffusion. J. Evol. Equ. 18, 1675–1696 (2018). https://doi.org/10.1007/s00028-018-0456-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-018-0456-0

Keywords

Mathematics Subject Classification

Navigation