Skip to main content
Log in

Global weak solutions in three space dimensions for electrokinetic flow processes

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

For a Navier–Stokes–Nernst–Planck–Poisson system we construct global weak solutions in a three-dimensional bounded domain. A special feature of our approach is that we allow for nonconstant diffusion coefficients which may vary from species to species as well as for \({L^2}\)-initial data without any further constraints. Our approach is based on the intrinsic energy structure, Aubin–Simon compactness arguments, and maximal \({L^p}\)-regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams and J.J.F. Fournier. Sobolev Spaces. Academic press, Kidlington, Oxford, 2 edition, 2003.

  2. H. Amann. Linear and Quasilinear Parabolic Problems—Abstract Linear Theory, volume 1 of Monographs in mathematics. Birkhäuser Verlag Basel, 1994.

  3. Amann H., Renardy M.: Reaction-diffusion problems in electrolysis. NoDEA Nonlinear Differential Equations Appl. 1, 91–117 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bergh and J. Löfström. Interpolation spaces. An introduction. Springer-Verlag, Berlin, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.

  5. P. Biler. Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions. Nonlinear Anal., 19:1121–1136, December 1992.

  6. Biler P., Dolbeault J.: Long time behavior of solutions to Nernst-Planck and Debye-Hckel drift-diffusion systems. Ann. Henri Poincaré 1, 461–472 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Biler, W. Hebisch, and T. Nadzieja. The Debye system: existence and large time behavior of solutions. Nonlinear Anal., 23:1189–1209, November 1994.

  8. D. Bothe, A. Fischer, M. Pierre, and G. Rolland. Global wellposedness for a class of reaction-advection-anisotropic-diffusion systems. In preparation.

  9. Bothe D., Fischer A., Pierre M., Rolland G.: Global existence for diffusion-electromigration systems in space dimension three and higher. Nonlinear Analysis 99, 152–166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bothe D., Fischer A., Saal J.: Global well-posedness and stability of electro-kinetic flows. SIAM Journal of Mathematical Analysis 46, 1263–1316 (2014)

    Article  MATH  Google Scholar 

  11. D. Bothe and J. Prüss. Mass transport through charged membranes. Proc. 4th European Conf. on Elliptic and Parabolic Problems, pages 332–342, 2002.

  12. S.T. Chang. New Electrokinetic Techniques for Material Manipulation on the Microscale. BiblioBazaar, 2011.

  13. Choi Y.S., Lui R.: Analysis of an electrochemistry model with zero-flux boundary conditions. Appl. Anal. 49, 277–288 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Choi Y.S., Lui R.: Multi-dimensional electrochemistry model. Arch. Rational Mech. Anal. 130, 315–342 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. E.L. Cussler. Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press, 2 edition, 1997.

  16. Dreyer W., Guhlke C., Müller R.: Overcoming the shortcomings of the Nernst-Planck model. Phys Chem Chem Phys. 15(19), 7075–7086 (2013)

    Article  Google Scholar 

  17. Gajewski H.: On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. Z. Angew. Math. Mech. 65, 101–108 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gajewski H., Gröger K.: Reaction-diffusion processes of electrically charged species. Math. Nachr. 177, 109–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. G.P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. Springer-Verlag, 2 edition, 2011.

  20. Giga Y.: Domains of fractional powers of the Stokes operator in \({L_r}\) spaces. Arch. Ration. Mech. Anal. 89, 251–265 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Glitzky A., Gröger K., Hünlich R.: Free energy and dissipation rate for reaction diffusion processes of electrically charged species. Appl. Anal. 60, 201–217 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Glitzky A., Hünlich R.: Energetic estimates and asymptotics for electro-reaction-diffusion systems. Z. Angew. Math. Mech. 77, 823–832 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Glitzky A., Hünlich R.: Global estimates and asymptotics for electro-reaction-diffusion systems in heterostructures. Appl. Anal. 66, 205–226 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jerome J.W., Sacco R.: Global weak solutions for an incompressible charged fluid with multi-scale couplings: Initial boundary-value problem. Nonlinear Anal. 71, e2487–e2497 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Kirby. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, 2010.

  26. O.A. Ladyzenskaja, V.A. Solonnikov, and N.N. Ural’ceva. Linear and quasilinear equations of parabolic type, volume 23 of Translation of Mathematical Monographs. Amer. Math. Soc, 1968.

  27. J.S. Newman. Electrochemical systems. Prentice Hall, 2 edition, 1991.

  28. Noll A., Saal J.: \({{\mathcal{H}}^\infty}\)-calculus for the Stokes operator on \({L_q}\)-spaces. Math. Z. 244, 651–688 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. R.F. Probstein. Physicochemical Hydrodynamics. Butterworths, 1989.

  30. R. Ryham. Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electrohydrodynamics. arXiv:0910.4973v1, 2009.

  31. Schmuck M.: Analysis of the Navier-Stokes-Nernst-Planck-Poisson system. Math. Models Methods Appl. 19, 993–1014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Simon J.: Compact sets in the space \({L^p(0,T;B)}\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Sohr. The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, 2001.

  34. Solonnikov V.A.: Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math 8, 213–317 (1977)

    MATH  Google Scholar 

  35. H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North Holland, 1978.

  36. M. Trojanowicz. Advances in Flow Analysis. Wiley-VCH, 2008.

  37. J. Wiedmann. An electrolysis model and its solutions. Phd-thesis, University of Zurich, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Saal.

Additional information

Dedicated to Professor Jan Prüss on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, A., Saal, J. Global weak solutions in three space dimensions for electrokinetic flow processes. J. Evol. Equ. 17, 309–333 (2017). https://doi.org/10.1007/s00028-016-0356-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-016-0356-0

Navigation