Abstract
For a Navier–Stokes–Nernst–Planck–Poisson system we construct global weak solutions in a three-dimensional bounded domain. A special feature of our approach is that we allow for nonconstant diffusion coefficients which may vary from species to species as well as for \({L^2}\)-initial data without any further constraints. Our approach is based on the intrinsic energy structure, Aubin–Simon compactness arguments, and maximal \({L^p}\)-regularity.
Similar content being viewed by others
References
R.A. Adams and J.J.F. Fournier. Sobolev Spaces. Academic press, Kidlington, Oxford, 2 edition, 2003.
H. Amann. Linear and Quasilinear Parabolic Problems—Abstract Linear Theory, volume 1 of Monographs in mathematics. Birkhäuser Verlag Basel, 1994.
Amann H., Renardy M.: Reaction-diffusion problems in electrolysis. NoDEA Nonlinear Differential Equations Appl. 1, 91–117 (1994)
J. Bergh and J. Löfström. Interpolation spaces. An introduction. Springer-Verlag, Berlin, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.
P. Biler. Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions. Nonlinear Anal., 19:1121–1136, December 1992.
Biler P., Dolbeault J.: Long time behavior of solutions to Nernst-Planck and Debye-Hckel drift-diffusion systems. Ann. Henri Poincaré 1, 461–472 (2000)
P. Biler, W. Hebisch, and T. Nadzieja. The Debye system: existence and large time behavior of solutions. Nonlinear Anal., 23:1189–1209, November 1994.
D. Bothe, A. Fischer, M. Pierre, and G. Rolland. Global wellposedness for a class of reaction-advection-anisotropic-diffusion systems. In preparation.
Bothe D., Fischer A., Pierre M., Rolland G.: Global existence for diffusion-electromigration systems in space dimension three and higher. Nonlinear Analysis 99, 152–166 (2014)
Bothe D., Fischer A., Saal J.: Global well-posedness and stability of electro-kinetic flows. SIAM Journal of Mathematical Analysis 46, 1263–1316 (2014)
D. Bothe and J. Prüss. Mass transport through charged membranes. Proc. 4th European Conf. on Elliptic and Parabolic Problems, pages 332–342, 2002.
S.T. Chang. New Electrokinetic Techniques for Material Manipulation on the Microscale. BiblioBazaar, 2011.
Choi Y.S., Lui R.: Analysis of an electrochemistry model with zero-flux boundary conditions. Appl. Anal. 49, 277–288 (1993)
Choi Y.S., Lui R.: Multi-dimensional electrochemistry model. Arch. Rational Mech. Anal. 130, 315–342 (1995)
E.L. Cussler. Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press, 2 edition, 1997.
Dreyer W., Guhlke C., Müller R.: Overcoming the shortcomings of the Nernst-Planck model. Phys Chem Chem Phys. 15(19), 7075–7086 (2013)
Gajewski H.: On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. Z. Angew. Math. Mech. 65, 101–108 (1985)
Gajewski H., Gröger K.: Reaction-diffusion processes of electrically charged species. Math. Nachr. 177, 109–130 (1996)
G.P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. Springer-Verlag, 2 edition, 2011.
Giga Y.: Domains of fractional powers of the Stokes operator in \({L_r}\) spaces. Arch. Ration. Mech. Anal. 89, 251–265 (1985)
Glitzky A., Gröger K., Hünlich R.: Free energy and dissipation rate for reaction diffusion processes of electrically charged species. Appl. Anal. 60, 201–217 (1995)
Glitzky A., Hünlich R.: Energetic estimates and asymptotics for electro-reaction-diffusion systems. Z. Angew. Math. Mech. 77, 823–832 (1997)
Glitzky A., Hünlich R.: Global estimates and asymptotics for electro-reaction-diffusion systems in heterostructures. Appl. Anal. 66, 205–226 (1997)
Jerome J.W., Sacco R.: Global weak solutions for an incompressible charged fluid with multi-scale couplings: Initial boundary-value problem. Nonlinear Anal. 71, e2487–e2497 (2009)
B. Kirby. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, 2010.
O.A. Ladyzenskaja, V.A. Solonnikov, and N.N. Ural’ceva. Linear and quasilinear equations of parabolic type, volume 23 of Translation of Mathematical Monographs. Amer. Math. Soc, 1968.
J.S. Newman. Electrochemical systems. Prentice Hall, 2 edition, 1991.
Noll A., Saal J.: \({{\mathcal{H}}^\infty}\)-calculus for the Stokes operator on \({L_q}\)-spaces. Math. Z. 244, 651–688 (2003)
R.F. Probstein. Physicochemical Hydrodynamics. Butterworths, 1989.
R. Ryham. Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electrohydrodynamics. arXiv:0910.4973v1, 2009.
Schmuck M.: Analysis of the Navier-Stokes-Nernst-Planck-Poisson system. Math. Models Methods Appl. 19, 993–1014 (2009)
Simon J.: Compact sets in the space \({L^p(0,T;B)}\). Ann. Mat. Pura Appl. 146, 65–96 (1987)
H. Sohr. The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, 2001.
Solonnikov V.A.: Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math 8, 213–317 (1977)
H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North Holland, 1978.
M. Trojanowicz. Advances in Flow Analysis. Wiley-VCH, 2008.
J. Wiedmann. An electrolysis model and its solutions. Phd-thesis, University of Zurich, 1997.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Professor Jan Prüss on the occasion of his 65th birthday.
Rights and permissions
About this article
Cite this article
Fischer, A., Saal, J. Global weak solutions in three space dimensions for electrokinetic flow processes. J. Evol. Equ. 17, 309–333 (2017). https://doi.org/10.1007/s00028-016-0356-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00028-016-0356-0