Skip to main content
Log in

Exponential stabilization of a class of 1-D hyperbolic PDEs

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

The problem of exponential stabilization of 1-D hyperbolic system with spatially varying coefficients is investigated. The main strategy reposes on mapping the original system into a target one by an invertible Volterra transformation with a kernel satisfying an appropriate PDE. This enables to convert a multiplicative perturbation exerted from the whole domain to a boundary perturbation in the target system. The problem is reformulated in the context of semigroups theory and solved via a quadratic Lyapunov functional. The stabilizer is explicitly constructed by means of a collocated-type controller of the auxiliary system combined with a term containing the solution of the kernel PDE. The technics of the feedback law construction also offer information about the stabilization mechanism which makes the proposed controller realizable in concrete situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. d’Andréa-Novel B., Boustany F., Conrad F., Rao B. P.: Feedback stabilization of a hybrid PDE-ODE system: application to an overhead crane. Math. Control Signals Systems, Vol. 17, No. 1, pp. 1–22 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. d’Andréa-Novel B., Coron J. M.: Exponential stabilization of an overhead crane with flexible cable via a cascade approach. Automatica, Vol. 36, N. 4, pp. 587–593 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control. Optim., 30, 1024–1065 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cerpa E., Krstic M., Smyshlayev M.: Boundary Stabilization of 1-D Wave Equation with In-domain Antidamping, SIAM J. Control Optim. Vol. 48, N. 6, pp. 4014–4031 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Conrad, and A. Mifdal, Strong stability of a model of an overhead crane, Control and Cybernetics, Vol. 27, No. 3, 1998.

  6. Datko R.: Extending a theorem of A.M. Lyapunov to Hilbert space. Journal of mathematical analysis and applications, 32, pp. 610–616 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elharfi A.: Explicit construction of a boundary feedback law to stabilize a class of parabolic equations. Differential and Integral Equations, Vol. 21, N. 3, pp. 351–362 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Elharfi A.: Control design of an overhead crane system from the perspective of stabilizing undesired oscillations.. IMA Journal of Mathematical Control and Information 28, 267–278 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Springer–Verlag 2000.

  10. P. Grabowski, The motion planning problem and exponential stabilization of a heavy chain. Part I, International Journal of Control, vol. 82, N. 8, pp. 1539–1563, 2009.

  11. Grabowski P.: The motion planning problem and exponential stabilization of a heavy chain. Part II, Opuscula Mathematica, Vol 28, N. 4, 481–505, (2008).

    MathSciNet  MATH  Google Scholar 

  12. Komornik V., Loreti P.: Fourier Series in Control Theory Springer Monogr. Springer-Verlag, New York, (2005)

    MATH  Google Scholar 

  13. I. Lasiecka and R. Triggiani, Riccati equations for hyperbolic partial diferential equations with L2(0, T; L2(Γ))-Dirichlet boundary terms, SIAMJ. Control Optim., 24, pp. 884–925, 1986.

  14. Lions J.-L.: Contrôlabilité exacte, perturbations et stabilisation des ystèmes distribués. Masson, Paris (1988)

    Google Scholar 

  15. Liu W.: Boundary feedback stabilization for an unstable heat equation. SIAM J. Control Optim. 42(3), 1033–1043 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Rao, Exponential stabilization of a hybrid system by dissipative boundary damping, Proceedings of the Second European Control Conference, Groningen, pp. 314–317.

  17. Russell D. L.: Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions. SIAM Rev., 20, pp. 639–739 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tucsnak M.: Boundary stabilization for the stretched string equation. Differential Integral Equations, 6, 925–935 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Yang K.-J., Hong K. S., Matsuno F.: Energy-Based Control of Axially Translating Beams: Varying Tension, Varying Speed, and Disturbance Adaptation. IEEE Transactions on Control Systems Technology, Vol. 13, No. 6, pp. 1045–1054 (2005)

    Article  Google Scholar 

  20. Weiss G., Reberber R.: Optimizability and estimability for infinite-dimensional systems. SIAM J. Control optim. Vol. 39, pp. 1204–1232 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhadi Elharfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elharfi, A. Exponential stabilization of a class of 1-D hyperbolic PDEs. J. Evol. Equ. 16, 665–679 (2016). https://doi.org/10.1007/s00028-015-0317-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-015-0317-z

Keywords

Navigation