Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of Evolution Equations
  3. Article
Majorization, 4G Theorem and Schrödinger perturbations
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

An Agmon estimate for Schrödinger operators on graphs

23 January 2023

Stefan Steinerberger

Schrödinger Operators on Graphs and Geometry II. Spectral Estimates for $${\varvec{L}}_\mathbf{1}$$ L 1 -potentials and an Ambartsumian Theorem

30 May 2018

Jan Boman, Pavel Kurasov & Rune Suhr

Riesz Potential and Maximal Function for Dunkl transform

22 July 2020

D. V. Gorbachev, V. I. Ivanov & S. Yu. Tikhonov

Zero Measure and Singular Continuous Spectra for Quantum Graphs

06 June 2020

David Damanik, Licheng Fang & Selim Sukhtaiev

Dispersion for Schrödinger operators on regular trees

18 March 2022

Kaïs Ammari & Mostafa Sabri

Convergence of ground state solutions for nonlinear Schrödinger equations on graphs

10 July 2018

Ning Zhang & Liang Zhao

Mean equicontinuity, almost automorphy and regularity

08 June 2021

Felipe García-Ramos, Tobias Jäger & Xiangdong Ye

Subgeometric Rates of Convergence for Discrete-Time Markov Chains Under Discrete-Time Subordination

17 January 2019

Chang-Song Deng

Spectral Determinants and an Ambarzumian Type Theorem on Graphs

01 June 2020

Márton Kiss

Download PDF
  • Open Access
  • Published: 26 November 2015

Majorization, 4G Theorem and Schrödinger perturbations

  • Krzysztof Bogdan1,
  • Yana Butko2,3 &
  • Karol Szczypkowski1,4 

Journal of Evolution Equations volume 16, pages 241–260 (2016)Cite this article

  • 432 Accesses

  • 10 Citations

  • 1 Altmetric

  • Metrics details

Abstract

Schrödinger perturbations of transition densities by singular potentials may fail to be comparable with the original transition density. For instance, this is so for the transition density of a subordinator perturbed by any time-independent unbounded potential. In order to estimate such perturbations, it is convenient to use an auxiliary transition density as a majorant and the 4G inequality for the original transition density and the majorant. We prove the 4G inequality for the 1/2-stable and inverse Gaussian subordinators, discuss the corresponding class of admissible potentials and indicate estimates for the resulting transition densities of Schrödinger operators. The connection of the transition densities to their generators is made via the weak-type notion of fundamental solution.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Applebaum, D. Lévy processes and stochastic calculus, 2 ed., vol. 116 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2009

  2. Bogdan K., Hansen W., Jakubowski T.: Time-dependent Schrödinger perturbations of transition densities. Studia Math. 189(3), 235–254 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogdan K., Hansen W., Jakubowski T.: Localization and Schrödinger perturbations of kernels. Potential Anal. 39(1), 13–28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bogdan K., Jakubowski T., Sydor S.: Estimates of perturbation series for kernels. J. Evol. Equ. 12(4), 973–984 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bogdan K., Szczypkowski K.: Gaussian estimates for Schrödinger perturbations. Studia Math. 221(2), 151–173 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butko, Ya. A. On fundamental solutions, transition probabilities and fractional derivatives. Science and Education of the Bauman MSTU, 1 : 42–52, 2015. DOI: 10.7463/0115.0754986

  7. Cont, R., and Tankov, P. Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL

  8. Dynkin, E. B. Diffusions, superdiffusions and partial differential equations, vol. 50 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2002

  9. Ethier, S. N., and Kurtz, T. G. Markov processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, 1986. Characterization and convergence

  10. Frazier M., Nazarov F., Verbitsky I.: Global estimates for kernels of Neumann series and Green’s functions. J. London Math. Soc. 90(3), 903–918 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grigor′yan A., Hansen W.: Lower estimates for a perturbed Green function. J. Anal. Math. 104, 25–58 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grzywny, T., and Szczypkowski, K. Kato classes for Lévy processes. ArXiv e-prints (Mar. 2015)

  13. Hansen W.: Global comparison of perturbed Green functions. Math. Ann. 334(3), 643–678 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jacob, N. Pseudo differential operators and Markov processes. Vol. I. Imperial College Press, London, 2001. Fourier analysis and semigroups

  15. Jakubowski T.: On combinatorics of Schrödinger perturbations. Potential Anal. 31(1), 45–55 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Räbiger F., Schnaubelt R., Rhandi A., Voigt J.: Non-autonomous Miyadera perturbations. Differential Integral Equations 13(1–3), 341–368 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Sato, K.-I. Lévy processes and infinitely divisible distributions, vol. 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original, Revised by the author

  18. Yosida, K. Functional analysis, sixth ed., vol. 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1980

  19. Zhang Q. S.: On a parabolic equation with a singular lower order term. II. The Gaussian bounds. Indiana Univ. Math. J. 46(3), 989–1020 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang Q. S.: A sharp comparison result concerning Schrödinger heat kernels. Bull. London Math. Soc. 35(4), 461–472 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland

    Krzysztof Bogdan & Karol Szczypkowski

  2. Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, Moscow, 105005, Russia

    Yana Butko

  3. University of Saarland, P.O. Box 15 11 50, 66041, Saarbrücken, Germany

    Yana Butko

  4. Universität Bielefeld, Postfach 10 01 31, 33501, Bielefeld, Germany

    Karol Szczypkowski

Authors
  1. Krzysztof Bogdan
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yana Butko
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Karol Szczypkowski
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Krzysztof Bogdan.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bogdan, K., Butko, Y. & Szczypkowski, K. Majorization, 4G Theorem and Schrödinger perturbations. J. Evol. Equ. 16, 241–260 (2016). https://doi.org/10.1007/s00028-015-0301-7

Download citation

  • Published: 26 November 2015

  • Issue Date: June 2016

  • DOI: https://doi.org/10.1007/s00028-015-0301-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Mathematics Subject Classification

  • Primary 47D06
  • 47D08
  • Secondary 35A08
  • 35B25

Keywords

  • 4G inequality
  • Schrödinger perturbation
  • Subordinator
  • Fundamental solution
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.