Skip to main content
Log in

A semilinear parabolic problem with singular term at the boundary

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we deal with a class of semilinear parabolic problems related to a Hardy inequality with singular weight at the boundary.

More precisely, we consider the problem

$$\left\{ \begin{array}{l@{\quad}l} u_t-\Delta u=\lambda \frac{u^p}{d^2} &\text{ in }\,\Omega_{T}\equiv\Omega \times (0,T), \\ u>0 &\text{ in }\,{\Omega_T}, \\ u(x,0)=u_0(x)>0 &\text{ in }\,\Omega, \\ u=0 &\text{ on }\partial \Omega \times (0,T), \end{array} \right. $$
(P)

where Ω is a bounded regular domain of \({\mathbbm{R}^N}\), \({d(x)=\text{dist}(x,\partial\Omega)}\), \({p > 0}\), and \({\lambda > 0}\) is a positive constant.

We prove that

  1. 1.

    If \({0 < p < 1}\), then (P) has no positive very weak solution.

  2. 2.

    If \({p=1}\), then (P) has a positive very weak solution under additional hypotheses on \({\lambda}\) and \({u_0}\).

  3. 3.

    If \({p > 1}\), then, for all \({\lambda > 0}\), the problem (P) has a positive very weak solution under suitable hypothesis on \({u_0}\).

Moreover, we consider also the concave–convex-related case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Abdellaoui, K. Biroud, J. Davila and F. Mahmoudi, Nonlinear elliptic problem related to the Hardy inequality with singular term at the boundary. Commun. Contemp. Math. 17 (2015), no. 3, 1450033.

  2. Abdellaoui B., Peral I., Primo A.: Influence of the Hardy potential in a semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A 139, no. 5, 897–926 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Attar, S. Merchan, I. Peral, A remark on existence of semilinear heat equation involving a Hardy–Leray potential. J. Evol. Equ. 15 (2015), no. 1, 239–250.

  4. Baras P., Goldstein J.: The heat equation with a singular potential. Trans. Amer. Math. Soc. 294, 121–139 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbatis G., Filippas S., Tertikas A.: A unified approach to improved \({L^p}\) Hardy inequalities with best constants. Trans. A.M.S. 356(6), 2169–2196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezis H., Cabré X.: Some simple nonlinear PDE’s without solution. Boll. Unione. Mat. Ital. Sez. B 8, 223–262 (1998)

    MATH  Google Scholar 

  7. Brezis H., Kamin S.: Sublinear elliptic equations in \({\mathbbm{R}^N}\). Manuscripta Math. 74, 87–106 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Brezis, M. Marcus, Hardy’s inequalities revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1–2, 217–237 (1998).

  9. Cabré X., Martel Y.: Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier. C. R. Acad. Sci. Paris Sér. I Math. 329, no. 11, 973–978 (1999)

    Article  MATH  Google Scholar 

  10. Cazenave T., Dickstein F., Escobedo M.: A semilinear heat equation with concave–convex nonlinearity. Rendiconti di Matematica, Serie VII 19, 211–242 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Dávila J., Peral I.: Nonlinear elliptic problems with a singular weight on the boundary. Calc. Var. Partial Differential Equations, 41, no. 3–4, 567–586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garcia-Azorero J., Peral I.: Hardy Inequalities and Some Critical Elliptic and Parabolic Problems. J. Differential Equations, 144(1), 441–476 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Ghergu, V. Radulescu, Singular Elliptic Problems. Bifurcation and Asymptotic Analysis. Oxford Lecture Series in Mathematics and Its Applications, vol. 37, The Clarendon Press, Oxford University Press, (2008).

  14. M. Marcus M, V.J. Mizel, Y. Pinchover, On the best constant for Hardy’s inequality in \({\mathbbm{R}^N}\). Trans. Amer. Math. Soc. 350(1998) 3237–3255

  15. Matskewich T., Sobolevskii P.E.: The best possible constant in generalized Hardy’s inequality for convex domain in \({\mathbbm{R}^N}\). Nonlinear Anal, Theory, Methods and Appl. Vol. 29, 1601–1610 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Prignet A.: Existence and uniqueness of entropy solution of parabolic problems with \({L^1}\) data. Nonlinear Anal. T.M.A. 28, no. 12, 1943–1954 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Shafrir, Asymptotic behaviour of minimizing sequences for Hardy inequality. Commun. Contemp. Math. no. 2 (2000), 151–189.

  18. A. Tertikas, L. Moschini, S. Filippas, Sharp Two Sided Heat Kernel Estimates for Critical Schrödinger Operators on Bounded Domains. Commun. Math. Phys. (2007), 237–281.

  19. Yvan Martel, Complete blow up and global behaviour of solution of \({u_t-\Delta u=g(u)}\). Ann. Inst. Henri Poincaré, (15) 6 (1998), 687–723.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Primo.

Additional information

Work partially supported by Project MTM2010-18128, MINECO, Spain.

B. Abdellaoui is also partially supported by a Grant from the ICTP centre of Italy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellaoui, B., Biroud, K. & Primo, A. A semilinear parabolic problem with singular term at the boundary. J. Evol. Equ. 16, 131–153 (2016). https://doi.org/10.1007/s00028-015-0295-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-015-0295-1

Mathematics Subject Classification

Keywords

Navigation