A nonlinear thermoelastic system with nonlinear boundary conditions

Abstract

In this paper, we give a mathematical treatment of a model for small vertical vibrations of an elastic membrane coupled with a heat equation and subject to nonlinear mixed boundary conditions. We establish the existence, uniqueness, and a uniform decay rate for global solutions to this nonlinear nonlocal thermoelastic coupled system under nonlinear boundary conditions.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Araruna F.D., Maciel A.B.: Existence and boundary stabilization of the semilinear wave equation, Nonlinear Analysis - TMA 67, 1288–1305 (2007)

    MATH  MathSciNet  Article  Google Scholar 

  2. 2

    J.P.: Un théorème de compacité, C. R. A. Sci. Paris 256, 5042–5044 (1963)

    MATH  MathSciNet  Google Scholar 

  3. 3

    H. Brezis, Functional analysis, Sobolev spaces and Partial differential equations, Springer, (2011).

  4. 4

    Chen G.: Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl. 58, 249–274 (1979)

    MATH  MathSciNet  Google Scholar 

  5. 5

    Chipot M., Lovar B.: On the Asymptotic Behaviour of Some Nonlocal Problems. Positivity 3, 65–81 (1999)

    MATH  MathSciNet  Article  Google Scholar 

  6. 6

    H. R. Clark, Global existence, uniqueness and exponential stability for a nonlinear thermoelastic system Applicable Analysis, Vol. 66, (1997), 39–56.

  7. 7

    H. R. Clark, L. P. San Gil Jutuca & M. M. Miranda, On a mixed problem for a linear coupled system with variable coefficients, Electronic J. of Diff. Equations, Vol. 1998, No. 04, (1998), 1–20.

  8. 8

    C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch, Rat. Mech. Anal., Vol. 29, (1968), 241–271.

  9. 9

    Hansen S.W.: Exponential energy decay in linear thermoelastic rod, Journal of Math. Analysis and Applications 167, 429–442 (1992)

    MATH  Article  Google Scholar 

  10. 10

    A. Haraux & E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Arch. Rat. Mech. Anal, (1988), 191–206.

  11. 11

    J. Goldstein, Semigroups of Operators and Applications, Oxford University Press, 1985.

  12. 12

    D. Henry, O. Lopes & A. Perisinitto, Linear thermoelasticity: asymptotic stability and essential spectrum, Nonlinear Analysis - TMA, vol. 21, 1(1993), 65–75.

  13. 13

    Komornik V., Zuazua E.: A direct method for boundary stabilization of the wave equation, J. Math. Pure et Appl. 69, 33–54 (1990)

    MATH  MathSciNet  Google Scholar 

  14. 14

    J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires, Dnod, Paris (1960).

  15. 15

    Louredo A.T., Marinho A.O., Clark M.R.: Boundary stabilization for a coupled system. Nonlinear Analysis - TMA 74, 6988–7004 (2011)

    MATH  Article  Google Scholar 

  16. 16

    A. T. Louredo & M. Milla Miranda, Nonlinear Boundary Dissipation for a Coupled System of Klein-Gordon Equations, Electronic J. of Diff. Equations, Vol. 120, (2010), 1–19.

  17. 17

    Marinho A.O., Clark M.R., Clark H.R.: On a coupled linear system with homogeneous damping. Appl. Math. Sci. 02, 679–699 (2008)

    MathSciNet  Google Scholar 

  18. 18

    Marinho A.O., Clark M.R., Clark H.R.: Existence and boundary stabilization of solutions for the coupled semilinear system. Nonlinear Analysis - TMA 70, 4226–4244 (2009)

    MATH  MathSciNet  Article  Google Scholar 

  19. 19

    Medeiros L.A., Milla Miranda M.: On a boundary value problem for wave equations: Existence, uniqueness-asymptotic behavior, Revista de Matemticas Aplicadas. Univerdidade de Chile 17, 47–73 (1996)

    MATH  MathSciNet  Google Scholar 

  20. 20

    Slemrod M.: Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity. Arch. Rot. Mech. Anal. 76, 97–133 (1981)

    MATH  MathSciNet  Google Scholar 

  21. 21

    Strauss W.A.: On weak solutions of semilinear hyperbolic equations. Annals of Brazilian Academy of Sciences 4(2), 645–651 (1970)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. R. Clark.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clark, H.R., Clark, M.R., Louredo, A.T. et al. A nonlinear thermoelastic system with nonlinear boundary conditions. J. Evol. Equ. 15, 895–911 (2015). https://doi.org/10.1007/s00028-015-0286-2

Download citation

Mathematics Subject Classification

  • 35L15
  • 35L20
  • 35K55
  • 35L60
  • 35L70

Keywords

  • Thermoelastic coupled system
  • Nonlinear boundary condition
  • Existence
  • Uniqueness and stabilization uniform of the solutions