L 1-estimates for eigenfunctions and heat kernel estimates for semigroups dominated by the free heat semigroup

Abstract

We investigate selfadjoint positivity preserving C 0-semigroups that are dominated by the free heat semigroup on \({\mathbb{R}^d}\). Major examples are semigroups generated by Dirichlet Laplacians on open subsets or by Schrödinger operators with absorption potentials. We show explicit global Gaussian upper bounds for the kernel that correctly reflect the exponential decay of the semigroup. For eigenfunctions of the generator that correspond to eigenvalues below the essential spectrum, we prove estimates of their L 1-norm in terms of the L 2-norm and the eigenvalue counting function. This estimate is applied to a comparison of the heat content with the heat trace of the semigroup.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Arendt W., Warma M.: Dirichlet and Neumann boundary conditions: What is in between?. J. Evol. Equ. 3(1), 119–135 (2003)

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    M. van den Berg, R. Hempel and J. Voigt, L 1-estimates for eigenfunctions of the Dirichlet Laplacian, to appear in J. Spectr. Theory.

  3. 3.

    M. van den Berg and E. B. Davies, Heat flow out of regions in \({\mathbb{R}^m}\), Math. Z. 202 (1989), no. 4, 463–482.

  4. 4.

    Coulhon T., Sikora A.: Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem. Proc. Lond. Math. Soc. 96(2), 507–544 (2008)

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Davies E. B.: Uniformly elliptic operators with measurable coefficients. J. Funct. Anal. 132(1), 141–169 (1995)

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    M. Keller, D. Lenz, H. Vogt and R. Wojciechowski, Note on basic features of large time behaviour of heat kernels, to appear in J. Reine angew. Math., DOI: 10.1515/crelle-2013-0070.

  7. 7.

    Li P., Yau S. T.: On the Schrödinger equation and the eigenvalue problem. Comm. Math. Phys. 88(3), 309–318 (1983)

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Manavi A., Vogt H., Voigt J.: Domination of semigroups associated with sectorial forms. J. Operator Theory 54(1), 9–25 (2005)

    MATH  MathSciNet  Google Scholar 

  9. 9.

    Ouhabaz E.M.: Comportement des noyaux de la chaleur des opérateurs de Schrödinger et applications à certaines équations paraboliques semi-linéaires. J. Funct. Anal. 238(1), 278–297 (2006)

    MATH  MathSciNet  Article  Google Scholar 

  10. 10.

    E. M. Ouhabaz and F.-Y. Wang, Sharp estimates for intrinsic ultracontractivity on \({C^{1,\alpha}}\)-domains. Manuscripta Math. 122 (2007), no. 2, 229–244.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hendrik Vogt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vogt, H. L 1-estimates for eigenfunctions and heat kernel estimates for semigroups dominated by the free heat semigroup. J. Evol. Equ. 15, 879–893 (2015). https://doi.org/10.1007/s00028-015-0285-3

Download citation

Mathematics Subject Classification

  • 35P99
  • 35K08
  • 35J10
  • 47A10

Keywords

  • Schrödinger operators
  • Eigenfunctions
  • L 1-estimates
  • Heat kernel estimates
  • Heat content
  • Heat trace