On the trivial solutions for the rotating patch model


In this paper, we study the clockwise simply connected rotating patches for Euler equations. By using the moving plane method, we prove that Rankine vortices are the only solutions to this problem in the class of slightly convex domains. We discuss in the second part of the paper the case where the angular velocity \({\varOmega=\frac{1}{2}}\), and we show without any geometric condition that the set of the V-states is trivial and reduced to the Rankine vortices.

This is a preview of subscription content, access via your institution.


  1. 1.

    A.L. Bertozzi and A.J. Majda, Vorticity and Incompressible Flow, Cambridge texts in applied Mathematics, Cambridge University Press, Cambridge, (2002).

  2. 2.

    Burbea J.: Motions of vortex patches. Lett. Math. Phys. 6, 1–16 (1982)

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    J.-Y. Chemin. Perfect incompressible Fluids. Oxford University Press 1998.

  4. 4.

    Deem G.S., Zabusky N.J.: Vortex waves: Stationary “V-states”, Interactions, Recurrence, and Breaking, Phys. Rev. Lett. 40 (13), 859–862 (1978)

    Article  Google Scholar 

  5. 5.

    L. E. Fraenkel. An introduction to maximum principles and symmetry in elliptic problems. Cambridge Tracts in Mathematics, 128. Cambridge University Press, Cambridge, 2000.

  6. 6.

    Hmidi T., Mateu J., Verdera J.: Boundary Regularity of Rotating Vortex Patches. Arch. Ration. Mech. Anal. 209(1), 171–208 (2013)

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    T. Hmidi, J. Mateu, J. Verdera. On rotating doubly connected vortices. J. Differential Equations 258 (2015), no. 4, 1395–1429.

  8. 8.

    G. Kirchhoff, Vorlesungen uber mathematische Physik (Leipzig, 1874).

  9. 9.

    W. Reichel. Characterization of balls by Riesz-potentials. Ann. Mat. Pura Appl. (4) 188 (2009), no. 2, 235–245.

  10. 10.

    Yudovich Y.: Nonstationary flow of an ideal incompressible liquid. Zh. Vych. Mat. 3, 1032–1066 (1963)

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Taoufik Hmidi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hmidi, T. On the trivial solutions for the rotating patch model. J. Evol. Equ. 15, 801–816 (2015). https://doi.org/10.1007/s00028-015-0281-7

Download citation


  • Angular Velocity
  • Stream Function
  • Trivial Solution
  • Geometric Constraint
  • Convex Domain