L p-theory for second-order elliptic operators with unbounded coefficients in an endpoint class


The m-accretivity and m-sectoriality of the minimal and maximal realizations of second-order elliptic operators of the form \({Au=-{\rm div}(a \nabla u)+F\cdot \nabla u +Vu}\) in \({L^p(\mathbb{R}^N)}\) are shown, where the coefficients a, F and V are unbounded. The result may be regarded as an endpoint assertion of the previous result in Sobajima (J Evol Equ 12:957–971, 2012) and an improvement of that in Metafune et al. (Forum Math 22:583–601, 2010). Moreover, an L p-generalization of Kato’s self-adjoint problem in Kato (1981, Appendix 2) is discussed. The proof is based on Sobajima (J Evol Equ 12:957–971, 2012). As examples, the operators \({-\Delta \pm |x|^{\beta-1}x \cdot \nabla +c|x|^{\gamma}}\) are also dealt with, which are mentioned in Metafune et al. (Forum Math 22:583–601, 2010).

This is a preview of subscription content, access via your institution.


  1. 1.

    Agmon S.: The L p approach to the Dirichlet problem, I: Regularity theorems. Ann. Scuola Norm. Sup. Pisa III 13, 405–448 (1959)

    MathSciNet  Google Scholar 

  2. 2.

    Arendt W., Metafune G., Pallara D.: Schrödinger operators with unbounded drift. J. Operator Theory 55, 185–211 (2006)

    MATH  MathSciNet  Google Scholar 

  3. 3.

    H. Brézis, “Functional analysis, Sobolev spaces and partial differential equations,” Universitext, Springer, New York, 2011.

  4. 4.

    G. Cupini, S. Fornaro, Maximal regularity in \({L^{p}(\mathbb{R}^{N})}\) for a class of elliptic operators with unbounded coefficients, Differential Integral Equations 17 (2004), 259–296.

  5. 5.

    Davies E.B.: L 1 properties of second order elliptic operators. Bull. London Math. Soc. 17, 417–436 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. 6.

    A. Eberle, “Uniqueness and Non-Uniqueness of Semigroups Generated by Singular Diffusion Operators,” Lecture Notes in Mathematics 1718, Springer-Verlag, Berlin, 1999.

  7. 7.

    H.O. Fattorini, On the angle of dissipativity of ordinary and partial differential operators, Functional Analysis, Holomorphy and Approximation Theory. II (Rio de Janeiro, 1981), Math. Studies, vol. 86, North-Holland, Amsterdam, 1984.

  8. 8.

    S. Fornaro, L. Lorenzi, Generation results for elliptic operators with unbounded diffusion coefficients in L p- and C b -spaces, Discrete Contin. Dyn. Syst. 18 (2007), 747–772.

  9. 9.

    J.A. Goldstein, “Semigroups of Linear Operators and Applications,” Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1985.

  10. 10.

    T. Kato, Schrödinger operators with singular potentials, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972). Israel J. Math. 13 (1972), 135–148 (1973).

  11. 11.

    T. Kato, Remarks on the selfadjointness and related problems for differential operators, Spectral theory of differential operators (Birmingham, Ala., 1981), 253–266, Math. Stud., 55, North-Holland, Amsterdam-New York, 1981.

  12. 12.

    T. Kato, L p-theory for Schrödinger operators with a singular potential, Aspects of Positivity in Functional Analysis (Tübingen, 1985), 63–78, Math. Stud., 122, North-Holland, Amsterdam, 1986.

  13. 13.

    T. Kato, “Perturbation theory for linear operators,” Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York 1966.

  14. 14.

    A. Lunardi, “Analytic semigroups and optimal regularity in parabolic problems,” Progress in Nonlinear Differential Equations and their Applications 16, Birkhäuser Verlag, Basel, 1995.

  15. 15.

    G. Metafune, D. Pallara, J. Prüss, R. Schnaubelt, L p-theory for elliptic operators on \({\mathbb{R}^{d}}\) with singular coefficients, Z. Anal. Anwendungen 24 (2005), 497–521.

    Google Scholar 

  16. 16.

    G. Metafune, D. Pallara, P.J. Rabier, R. Schnaubelt, Uniqueness for elliptic operators on \({L^{p}(\mathbb{R}^{N})}\) with unbounded coefficients, Forum Math. 22 (2010), 583–601.

    Google Scholar 

  17. 17.

    Okazawa N.: An L p theory for Schrödinger operators with nonnegative potentials. J. Math. Soc. Japan 36, 675–688 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. 18.

    Okazawa N.: Sectorialness of second order elliptic operators in divergence form. Proc. Amer. Math. Soc. 113, 701–706 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. 19.

    Okazawa N.: L p-theory of Schrödinger operators with strongly singular potentials. Japan. J. Math. 22, 199–239 (1996)

    MATH  MathSciNet  Google Scholar 

  20. 20.

    F.W.J. Olver, “Asymptotics and special functions,” Computer Science and Applied Mathematics, Academic Press, New York-London, 1974.

  21. 21.

    Semenov Yu.A.: Schrödinger operators with \({L^{p}_{\rm loc}}\) -potentials. Comm. Math. Phys. 53, 277–284 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  22. 22.

    Simon B.: Essential self-adjointness of Schrödinger operators with positive potentials. Math. Ann. 201, 211–220 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  23. 23.

    Sobajima M.: L p-theory for second-order elliptic operators with unbounded coefficients. J. Evol. Equ. 12, 957–971 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. 24.

    M. Sobajima, L p-theory for second-order elliptic operators with unbounded drift, Surikaisekikenkyusho Kokyuroku 1856 (2013), 75–88.

    Google Scholar 

  25. 25.

    H. Tanabe, “Equations of Evolution,” Monographs and Studies in Mathematics 6, Pitman, London, 1979.

Download references

Author information



Corresponding author

Correspondence to Motohiro Sobajima.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sobajima, M. L p-theory for second-order elliptic operators with unbounded coefficients in an endpoint class. J. Evol. Equ. 14, 461–475 (2014). https://doi.org/10.1007/s00028-014-0223-9

Download citation

Mathematics Subject Classification (2000)

  • Primary 35J15
  • Secondary 47D06


  • Second-order elliptic operators
  • unbounded coefficients
  • L p-generalization of Kato’s self-adjointness problem
  • m-Accretive operators in L p
  • m-Sectorial operators in L p