Periodic solutions of a fractional neutral equation with finite delay


In this paper, we prove the maximal regularity property of an abstract fractional differential equation with finite delay on periodic Besov and Triebel–Lizorkin spaces and use these results to guarantee the existence and uniqueness of periodic solution of a neutral fractional differential equation with finite delay. The main tool used to achieve our goal is an operator-valued version of Miklhin’s Fourier multiplier theorem and fixed-point argument.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. Adimy, A. Elazzouzi, and K. Ezzinbi Bohr-Neugebauer type theorem for some partial neutral functional differential equations, Nonlinear Anal. 66 (2007), no. 5, 1145–1160.

    Google Scholar 

  2. 2.

    V. V. Anh and N. N. Leonenko Spectral analysis of fractional kinetic equations with random data, J. Statist. Phys. 104 (2001), no. 5–6, 1349–1387.

  3. 3.

    W. Arendt and S. Bu The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Math. Z. 240 (2002), no. 2, 311–343.

  4. 4.

    W. Arendt and S. Bu Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proc. Edinb. Math. Soc. (2) 47 (2004), no. 1, 15–33.

  5. 5.

    E. G. Bazhlekova Fractional Evolution Equations in Banach Spaces, Eindhoven University of Technology, Eindhoven, 2001. Dissertation, Technische Universiteit Eindhoven, Eindhoven, 2001.

  6. 6.

    S. Q. Bu Maximal regularity of second order delay equations in Banach spaces, Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 1, 21–28.

    Google Scholar 

  7. 7.

    S. Bu and Y. Fang Maximal regularity of second order delay equations in Banach spaces, Sci. China Math. 53 (2010), no. 1, 51–62.

  8. 8.

    S. Q. Bu and J. M. Kim Operator-valued Fourier multipliers on periodic Triebel spaces, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 5, 1049–1056.

    Google Scholar 

  9. 9.

    S. Bu and J.-M. Kim Operator-valued Fourier multiplier theorems on Triebel spaces, Acta Math. Sci. Ser. B Engl. Ed. 25 (2005), no. 4, 599–609.

  10. 10.

    P. L. Butzer and U. Westphal An access to fractional differentiation via fractional difference quotients, Fractional calculus and its applications (Proc. Internat. Conf., Univ. New Haven, West Haven, Conn., 1974), 1975, pp. 116–145. Lecture Notes in Math., Vol. 457.

  11. 11.

    C. Cuevas and J. C. de Souza S -asymptotically ω-periodic solutions of semilinear fractional integro-differential equations, Appl. Math. Lett. 22 (2009), no. 6, 865–870.

  12. 12.

    K. Ezzinbi, S. Fatajou, and G. M. Nguérékata Pseudo almost automorphic solutions for some partial functional differential equations with infinite delay, Appl. Anal.87 (2008), no. 5, 591–605.

    Google Scholar 

  13. 13.

    M. Girardi and L. Weis Criteria for R-boundedness of operator families, Evolution equations, 2003, pp. 203–221.

  14. 14.

    R. Gorenflo and F. Mainardi Fractional calculus: integral and differential equations of fractional order, Fractals and fractional calculus in continuum mechanics (Udine, 1996), 1997, pp. 223–276.

  15. 15.

    Grünwald A.: Uber begrenzte derivationen und deren anwendung. Math. Phys. 12, 441–480 (1867)

    Google Scholar 

  16. 16.

    L. X. Guo, S. P. Lu, B. Du, and F. Liang Existence of periodic solutions to a second-order neutral functional differential equation with deviating arguments, J. Math. (Wuhan) 30 (2010), no. 5, 839–847.

    Google Scholar 

  17. 17.

    J. K. Hale Coupled oscillators on a circle, Resenhas 1 (1994), no. 4, 441–457. Dynamical phase transitions (São Paulo, 1994).

  18. 18.

    E. Hernández, D. ORegan, and K. Balachandran On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Anal. 73 (2010), no. 10, 3462–3471.

    Google Scholar 

  19. 19.

    H. R. Henríquez, M. Pierri, and A. Prokopczyk Periodic solutions of abstract neutral functional differential equations, J. Math. Anal. Appl. 385 (2012), no. 2, 608–621.

  20. 20.

    H. R. Henríquez and V. Poblete, Periodic solutions of neutral fractional differential equations, Submitted.

  21. 21.

    R. Hilfer Applications of Fractional Calculus in Physics (R. Hilfer, ed.), World Scientific Publishing Co. Inc., River Edge, NJ, 2000.

  22. 22.

    M. Jia, X. P. Liu, W. G. Ge, and Y. P. Guo Periodic solutions to a neutral integro-differential equation with three delays, J. Systems Sci. Math. Sci. 27 (2007), no. 4, 615–623.

    Google Scholar 

  23. 23.

    N. J. Kalton and L. Weis The H -calculus and sums of closed operators, Math. Ann. 321 (2001), no. 2, 319–345.

  24. 24.

    Y. Katznelson An Introduction to Harmonic Analysis, Third, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004.

  25. 25.

    V. Keyantuo and C. Lizama Periodic solutions of second order differential equations in Banach spaces, Math. Z. 253 (2006), no. 3, 489514.

    Google Scholar 

  26. 26.

    V. Keyantuo and C. Lizama A characterization of periodic solutions for time-fractional differential equations in UMD spaces and applications, Math. Nachr. 284 (2011), no. 4, 494506.

  27. 27.

    V. Keyantuo, C. Lizama, and V. Poblete Periodic solutions of integro-differential equations in vector-valued function spaces, J. Differential Equations 246 (2009), no. 3, 1007–1037.

  28. 28.

    A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.

  29. 29.

    A. V. Letnikov Theory and differentiation of fractional order, Mat. Sb. 3, 1–68.

  30. 30.

    C. Lizama Fourier multipliers and periodic solutions of delay equations in Banach spaces, J. Math. Anal. Appl. 324 (2006), no. 2, 921–933.

    Google Scholar 

  31. 31.

    C. Lizama and V. Poblete Maximal regularity of delay equations in Banach spaces, Studia Math. 175 (2006), no. 1, 91–102.

  32. 32.

    C. Lizama and V. Poblete Periodic solutions of fractional differential equations with delay, J. Evol. Equ. 11 (2011), no. 1, 57–70.

  33. 33.

    R. Metzler and J. Klafter The random walks guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77.

  34. 34.

    R. Metzler and J. Klafter Boundary value problems for fractional diffusion equations, Phys. A 278 (2000), no. 1-2, 107–125.

  35. 35.

    K. S. Miller and B. Ross An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1993.

  36. 36.

    I. Podlubny, I. Petráš, B. M. Vinagre, P. OLeary, and L. Dorč ák Analogue realizations of fractional-order controllers, Nonlinear Dynam. 29 (2002), no. 1–4, 281–296. Fractional order calculus and its applications.

  37. 37.

    S. G. Samko, A. A. Kilbas, and O. I. Marichev Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications, Edited and with a foreword by S. M. Nikolskiǐ, Translated from the 1987 Russian original, Revised by the authors.

  38. 38.

    P. Weng Oscillation in periodic neutral parabolic differential system, Bull. Inst. Math. Acad. Sinica 24 (1996), no. 1, 33–47.

  39. 39.

    J. Wu and H. Xia Rotating waves in neutral partial functional-differential equations, J. Dynam. Differential Equations 11 (1999), no. 2, 209–238.

Download references

Author information



Corresponding author

Correspondence to Verónica Poblete.

Additional information

The authors are partially financed by FONDECYT 1110090. The second author is financed by MECESUP PUC 0711.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Poblete, V., Pozo, J.C. Periodic solutions of a fractional neutral equation with finite delay. J. Evol. Equ. 14, 417–444 (2014).

Download citation

Mathematics Subject Classification (2010)

  • 34K40
  • 39A23
  • 34K37


  • Maximal regularity
  • Fourier multipliers
  • Strong solutions
  • Fractional neutral equations