Skip to main content
Log in

Time evolution for a model of epidermis growth

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we study a system of nonlinear hyperbolic equations, with nonlocal boundary conditions and a free boundary, arising in the modeling of epidermis growth. The model was introduced in a previous paper (Gandolfi et al. in J Math Biol 62(1):111–141, 2010) where conditions for the existence of a steady state were investigated. The present paper is devoted to prove existence and uniqueness of a solution to the evolution problem and of the related moving boundary representing the external surface of the epidermis. The proof of the theorem is based on the integration along characteristic curves in order to obtain suitable estimates allowing to set up a fixed point procedure. The modellistic aim of the paper is a description of the structure of the epidermis as a layered aggregate of different type of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams M.P., Mallet D.G., Pettet G.J.: Active regulation of the epidermal calcium profile. J. Theor. Biol. 301, 112–121 (2012)

    Article  MathSciNet  Google Scholar 

  2. Allen T.D., Potten C.S.: Ultrastructural site variation in mouse epidermal organization. J. Cell Sci. 21, 341–359 (1976)

    Google Scholar 

  3. Ambrosi D., Preziosi L.: On the closure of mass balance models for tumor growth. Math. Models Meth. Appl. Sci. 12, 737–754 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertuzzi A., Gandolfi A.: Cell kinetics in a tumour cord. J. Theor. Biol. 204, 587–599 (2000)

    Article  Google Scholar 

  5. Bertuzzi A., Fasano A., Gandolfi A.: A free boundary problem with unilateral constraints describing the evolution of a tumor cord under the influence of cell killing agents. SIAM J. Math. Anal. 36, 882–915 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Byrne H.M., Preziosi L.: Modelling solid tumor growth using the theory of mixture. Math. Med. Biol. 20, 341–366 (2003)

    Article  MATH  Google Scholar 

  7. Dyson J., Villella-Bressan R., Webb G.: The evolution of a tumor cord cell population, Comm. Pure Appl. Anal. 3, 331–352 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedman A., Hu B.: The role of oxygen in tissue maintenance: mathematical modeling and qualitative analysis. Math. Mod. Meth. Appl. Sci. 18, 1409–1441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gandolfi, A., Iannelli, M., Marinoschi, G.: An age-structured model of epidermis growth, J. Math. Biol. 62, 1, 111–141, 2010.

    Google Scholar 

  10. Hadgraft J.: Skin, the final frontier. Int. J. Pharm. 224, 1–18 (2001)

    Article  Google Scholar 

  11. Klein-Szanto A.J.P.: Stereological baseline data of normal human epidermis. J. Invest. Dermatol. 68, 73–78 (1977)

    Article  Google Scholar 

  12. Lowes M.A., Bowcock A.M., Krueger J.G.: Pathogenesis and therapy of psoriasis. Nature 445, 866–873 (2007)

    Article  Google Scholar 

  13. Potten C.S.: The epidermal proliferative unit: the possible role of central basal cell proliferation. Cell Prolif. 7, 77–88 (1974)

    Article  Google Scholar 

  14. Preziosi L., Vitale G.: A multiphase model of tumor and tissue growth including cell adhesion and plastic reorganization. Math. Models Methods Appl. Sci. 21, 1901–1932 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Savill N.J.: Mathematical models of hierarchically structured cell populations under equilibrium with application to the epidermis. Cell Prolif. 36, 1–26 (2003)

    Article  Google Scholar 

  16. Stekel D., Rashbass J., Williams E.D.: A computer graphic simulation of squamous epithelium. J. Theor. Biol. 175, 283–293 (1995)

    Article  Google Scholar 

  17. Webb G.: The steady state of a tumor cord cell population. J. Evol. Eqs. 2, 425–438 (2002)

    Article  MATH  Google Scholar 

  18. Webb, G.: Population models structured by age, size, and spatial position. In: Structured population models in Biology and Epidemiology. Auger, P., Magal, P., Ruan, S. (eds.), Springer Verlag, 2008, 1–49

  19. Weinstein G.D., McCoullog J.L., Ross P.: Cell proliferation in normal epidermis. J. Invest. Dermatol. 82, 623 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mimmo Iannelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandolfi, A., Iannelli, M. & Marinoschi, G. Time evolution for a model of epidermis growth. J. Evol. Equ. 13, 509–533 (2013). https://doi.org/10.1007/s00028-013-0188-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-013-0188-0

Mathematics Subject Classification

Keywords

Navigation