Skip to main content
Log in

Existence of solutions for models of shallow water in a basin with a degenerate varying bottom

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We prove the existence of solutions for the great lake equations. These equations are obtained from the three-dimensional Euler equations in a basin with a free upper surface and a spatially varying bottom topography by taking a low aspect ratio, i.e., low wave speed and small wave amplitude expansion. These equations are rewritten in an abstract form by considering generalized Euler equations as in Levermore et al. (Indiana Univ Math J 45:479–510, 1996). This paper is an extension of Levermore et al. (Indiana Univ Math J 45:479–510, 1996), where the varying bottom was assumed to be nondegenerate. Here, we discuss the degenerate case and obtain similar results as in Levermore et al. (Indiana Univ Math J 45:479–510, 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbu V.: Nonlinear differential equations of monotone type in Banach spaces. Springer, New-York (2010)

    Book  Google Scholar 

  2. Barbu V., Sritharan S.: Flow invariance preserving feedback controllers for the Navier–Stokes equations. J. Math. Anal. appl. 255, 281–307 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Bresch, B. Desjardins, G. Metivier, Recent mathematical results and open problems about shallow water equations, Anal. Sim. of Fluid Flows, Birkhauser (2007), 15–32.

  4. D. Bresch, G. Metivier, Global existence and uniqueness for the lake equations with vanishing topography: elliptic estimates for the degenerate equations, Nonlinearity 19 (3) (2006), 591–610.

    Google Scholar 

  5. Camassa R., Holm D.D., Levermore C.D.: Long-time shallow water equations with a varying bottom. J. Fluid Mech. 349, 173–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chua S.K.: Extension theorems on weighted Sobolev spaces. Indiana Univ. Math. J. 41, 1027–1076 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fabes E., Kening C., Serapioni R.: The local regularity of solutions of degenerate elliptic equations. Comm. P.D.E. 7, 77–116 (1982)

    Article  MATH  Google Scholar 

  8. Farwig R., Sohr H.: Weighted L q−theory for the Stokes resolvent in exterior domains. J. Math. Soc. Japan 49, 251–288 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Frohlich, The Navier–Stokes equations with low-regularity data in weighted function spaces, Doktor der Naturwissenschaften dissertation, (2006).

  10. A. Frohlich, Stokes-und Navier–Stokes-Gleichungen in gewichteten funktionenraumen, Shaker Verlag, Aachen, 2001.

  11. Frohlich A.: The Stokes operator in weighted L q−spaces I: weighted estimates for the Stokes resolvent problem in a half space. J. Math.Fluid Mech. 5,–166199 (2003)

    MathSciNet  Google Scholar 

  12. J. Garcia-Cuerva, J.L. Rubio de Francia, Weighted norm inequalities and related topics, North Holland, Amsterdam, 1985.

  13. V. Gol’dshtein, A. Ukhlov, Weighted Sobolev spaces and embedding theorems, arXiv:math/0703725v4 [math.FA].

  14. Haroske D.: Sobolev spaces with Muckenhoupt weights, singularities and inequalities. Georgian Mathematical Journal Vol. 15, 263–280 (2008)

    MathSciNet  MATH  Google Scholar 

  15. J. Heinonen, T. Kilpelainen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, Oxford University Press, 1993.

  16. T. Kilpelainen, Smooth approximation in weightd Sobolev spaces, Comment. Math. Univ. Carolin., 38 (1997).

  17. Kilpelainen T.: Weighted Sobolev spaces and capacity. Annales Acad. Scient. Fennicae Vol. 19, 95–113 (1994)

    MathSciNet  Google Scholar 

  18. Levermore C.D., Oliver M., Titi E.S.: Global well-posedeness for models of shallow water in a basin with a varying bottom. Indiana University Mathematics Journal Vol. 45, 479–510 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Muckenhoupt B.: Weighted norm inequalities for the Hardy maximal functions. Trans. Amer. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Stein, Harmonic analysis: real-variable methods, orthogonality and oszillatory integrals, Princeton Mathematical Series, 43,Princeton University Press, Princeton, N. J., 1993.

  21. B.O. Turesson, Nonlinear potential theory and weighted Sobolev spaces, Lecture Notes in Mathematics, vol. 1736, Springer-Verlag, 2000.

  22. Youdovitch V.I.: Non-stationary flow of an ideal incompressible liquid, Zh. Vychisl. Mat. i Mat. Fiz. 6, 1032–1066 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionuţ Munteanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munteanu, I. Existence of solutions for models of shallow water in a basin with a degenerate varying bottom. J. Evol. Equ. 12, 393–412 (2012). https://doi.org/10.1007/s00028-012-0137-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-012-0137-3

Mathematics Subject Classification (2000)

Keywords

Navigation