Skip to main content
Log in

Construction, ergodicity and rate of convergence of N-particle Langevin dynamics with singular potentials

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We construct N-particle Langevin dynamics in \({\mathbb{R}^d}\) or in a cuboid region with periodic boundary for a wide class of N-particle potentials Φ and initial distributions which are absolutely continuous w.r.t. Lebesgue measure. The potentials are in particular allowed to have singularities and discontinuous gradients (forces). An important point is to prove an L p-uniqueness of the associated non-symmetric, non-sectorial degenerate elliptic generator. Analyzing the associated functional analytic objects, we also give results on the long-time behaviour of the dynamics, when the invariant measure is finite: Firstly, we prove the weak mixing property whenever it makes sense (i.e. whenever {Φ < ∞} is connected). Secondly, for a still quite large class of potentials we also give a rate of convergence of time averages to equilibrium when starting in the equilibrium distribution. In particular, all results apply to N-particle systems with pair interactions of Lennard–Jones type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, Yu.G. Kondratiev, and M. Röckner. Strong Feller properties for distorted Brownian motion and applications to finite particle systems with singular interactions. In Finite and Infinite Dimensional Analysis in Honor of Leonard Gross, volume 317 of Contemporary Mathematics. Amer. Math. Soc., Providence, RI, 2003.

  2. H. W. Alt. Lineare Funktionalanalysis. Eine anwendungsorientierte Einführung. 5. Auflage. Springer, Berlin, 2006.

  3. Bakry D., Barthe F., Cattiaux P., Guillin A.: A simple proof of the Poincaré inequality for a large class of probability measures. Elec. Comm. in Probab. 13, 60–66 (2008)

    MATH  MathSciNet  Google Scholar 

  4. Beznea L., Boboc N., Röckner M.: Markov processes associated with L p-resolvents and applications to stochastic differential equations on Hilbert space. J. Evol. Equ. 6(4), 745–772 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Conrad F., Grothaus M.: Construction of N-particle Langevin dynamics for H 1,∞-potentials via generalized Dirichlet forms. Potential Anal. 28, 261–282 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Conrad and M. Grothaus. N/V-limit for langevin dynamics in continuum. Preprint, arXiv: 0805.2518v1, 2008.

  7. A. Cornea and G. Licea. Order and potential resolvent families of kernels. Lecture Notes in Mathematics. 494. Berlin-Heidelberg-New York: Springer-Verlag, 1975.

  8. Da Prato G., Lunardi A.: Maximal dissipativity of a class of elliptic degenerate operators in weighted L 2 spaces. Discrete Contin. Dyn. Syst., Ser. B 6(4), 751–760 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Da Prato G., Lunardi A.: On a class of degenerate elliptic operators in L 1 spaces with respect to invariant measures. Math. Z. 256(3), 509–520 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Da Prato G., Röckner M.: Singular dissipative stochastic equations in Hilbert spaces. Probab. Theory Relat. Fields 124(2), 261–303 (2002)

    Article  MATH  Google Scholar 

  11. Da Prato G., Zabczyk J.: Ergodicity for infinite dimensional systems. Cambridge Univ. Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  12. E.B. Davies. One-Parameter Semigroups. L.M.S. Monographs. Academic Press, 1980.

  13. A. de Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti. A survey of the hydrodynamical behavior of many-particle systems. In Nonequilibrium phenomena II: From stochastics to hydrodynamics, volume 11 of Stud. Stat. Mech., pages 193–294. North Holland Physics Publishing, Amsterdam, Oxford, New York, Tokyo, 1984.

  14. Durrett R.: Stochastic Calculus. A Practical Introduction. CRC Press, New York (1996)

    MATH  Google Scholar 

  15. A. Eberle. Uniqueness and Non-Uniqueness of Semigroups Generated by Singular Diffusion Operators, volume 1718 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, New York, 1999.

  16. Fukushima M., Oshima Y., Takeda M.: Dirichlet forms and symmetric Markov processes. W. de Gruyter, Berlin, New York (1994)

    MATH  Google Scholar 

  17. D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Grundlehren der mathematischen Wissenschaften. 224. Berlin-Heidelberg-New York: Springer-Verlag, 1977.

  18. Grothaus M., Klar A.: Ergodicity and rate of convergence for a non-sectorial fiber lay-down process. SIAM J. Math. Anal. 40, 968–983 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Grothaus M., Kondratiev Yu.G., Röckner M.: N/V-limit for stochastic dynamics in continuous particle systems. Probab. Theory Relat. Fields 137, 121–160 (2007)

    Article  MATH  Google Scholar 

  20. B. Helffer and F. Nier. Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians. Lecture Notes in Mathematics 1862. Berlin: Springer., 2005.

  21. Kolesnikov A.V.: Convergence of Dirichlet forms with changing speed measures on \({\mathbb{R}^d}\). Forum Math. 17, 225–259 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kurtz T.G.: Extensions of Trotter’s operator semigroup approximation theorems. J. Funct. Anal. 3, 354–375 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kuwae K., Shioya T.: Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry. Commun. Anal. Geom. 11(4), 599–673 (2003)

    MATH  MathSciNet  Google Scholar 

  24. H. Leiva. C 0-Semigroups and Applications to Partial Differential Equations. Notas de matematica; 218: Serie: pre-print, Universidad de los Andes, 2001.

  25. V.A. Liskevich and Yu.A. Semenov. Some problems on Markov semigroups. Demuth, Michael (ed.) et al., Schrödinger operators, Markov semigroups, wavelet analysis, operator algebras. Berlin: Akademie Verlag. Math. Top. 11, 163-217, 1996.

  26. Ma Z.-M., Röckner M.: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, Berlin, New York (1992)

    MATH  Google Scholar 

  27. Olla S., Tremoulet C.: Equilibrium fluctuations for interacting Ornstein–Uhlenbeck particles. Comm. Math. Phys. 233(3), 463–491 (2003)

    MATH  MathSciNet  Google Scholar 

  28. Pazy A.: Semigroups of linear operators and applications to partial differential equations. Springer, New York (1983)

    MATH  Google Scholar 

  29. Stannat W.: (Nonsymmetric) Dirichlet operators on L 1: Existence, Uniqueness and Associated Markov Processes. Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 28(1), 99–140 (1999)

    MATH  MathSciNet  Google Scholar 

  30. W. Stannat. The theory of generalized Dirichlet forms and its applications in Analysis and Stochastics. Memoirs of the AMS, 142(678), 1999.

  31. Stroock D.W., Varadhan S.R.S.: Multidimensional diffusion processes. Springer-Verlag, Berlin, Heidelberg, New York (1979)

    MATH  Google Scholar 

  32. J.M. Tölle. Convergence of non-symmetric forms with changing reference measures. Bibos preprint e06-09-234, University of Bielefeld, 2006.

  33. Trotter H.F.: Approximation of semi-groups of operators. Pac. J. Math. 8, 887–919 (1958)

    MATH  MathSciNet  Google Scholar 

  34. Trutnau G.: On hunt processes and strict capacities associated with generalized dirichlet forms. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8, 357–382 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wu L.: Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems. Stochastic Processes Appl. 91(2), 205–238 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Conrad.

Additional information

Financial support by the DFG through the project GR 1809/5-1 is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, F., Grothaus, M. Construction, ergodicity and rate of convergence of N-particle Langevin dynamics with singular potentials. J. Evol. Equ. 10, 623–662 (2010). https://doi.org/10.1007/s00028-010-0064-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-010-0064-0

Mathematics Subject Classification (2000)

Keywords

Navigation