Skip to main content
Log in

Existence and uniqueness of solutions for Fokker–Planck equations on Hilbert spaces

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider a stochastic differential equation in a Hilbert space with time-dependent coefficients for which no general existence and uniqueness results are known. We prove, under suitable assumptions, the existence and uniqueness of a measure valued solution, for the corresponding Fokker–Planck equation. In particular, we verify the Chapman–Kolmogorov equations and get an evolution system of transition probabilities for the stochastic dynamics informally given by the stochastic differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Ambrosio, Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158 (2004), no. 2, 227–260.

  2. L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields. Calculus of Variations and Non-Linear Partial Differential Equations, B. Dacorogna and P. Marcellini eds. P. 2–41. Lecture Notes in Mathematics, V. 1927. Springer, New York, 2008.

  3. L. Ambrosio, A. Figalli, On flows associated to Sobolev vector fields in Wiener spaces: an approach à la DiPerna–Lions. J. Funct. Anal. 256 (2009), no. 1, 179–214.

    Google Scholar 

  4. V. Bogachev, Measure Theory, Vol. 2, Springer, 2007.

  5. V. Bogachev, G. Da Prato, M. Röckner, Existence of solutions to weak parabolic equations for measures. Proc. London Math. Soc., (3), 88 (2004), 753–774.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Bogachev, G. Da Prato, M. Röckner, On parabolic equations for measures. Comm. Partial Diff. Equat. 33 (2008), 1–22.

    Article  Google Scholar 

  7. V.I. Bogachev, G. Da Prato, M. Röckner, Parabolic equations for measures on infinite-dimensional spaces. Dokl. Math. 78 (2008), no. 1, 544–549.

    Google Scholar 

  8. V. Bogachev, G. Da Prato, M. Röckner, Fokker–Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces. J. Funct. Anal. 256 (2009), 1269–1298.

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Bogachev, G. Da Prato, M. Röckner, Existence results for Fokker–Planck equations in Hilbert spaces. Proceedings of the conference “Stochastic Analysis, Random Fields and Applications” (Ascona, May 19–23, 2008), Progress in Probability (to appear).

  10. V.I. Bogachev, G. Da Prato, M. Röckner, S.V. Shaposhnikov, Nonlinear evolution equations for measures on infinite dimensional spaces. Preprint 2009; to appear in Proceedings of the conference “Stochastic Partial Differential Equations and Applications-VIII” (Levico, January 6–12, 2008), Quaderni di Matematica, Series edited by Dipartimento di Matematica Seconda Università di Napoli.

  11. V. Bogachev, G. Da Prato, M. Röckner, W. Stannat, Uniqueness of solutions to weak parabolic equations for measures. Bull. Lond. Math. Soc. 39 (2007), no. 4, 631–640.

    Google Scholar 

  12. V.I. Bogachev, M. Röckner, S.V. Shaposhnikov, Nonlinear evolution and transport equations for measures. Dokl. Math. 80 (2009), no.3, 785–789.

    Google Scholar 

  13. V.I. Bogachev, M. Röckner, W. Stannat, Uniqueness of invariant measures and essential m-dissipativity of diffusion operators on L 1. Infinite dimensional stochastic analysis (Amsterdam, 1999), 39–54, Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., 52, R. Neth. Acad. Arts Sci., Amsterdam, 2000.

  14. V.I. Bogachev, M. Röckner, W. Stannat, Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions. Mat. Sb. 193 (2002), no. 7, 3–36 (in (Russian); translation in Sb. Math. 193 (2002), no. 7–8, 945–976.

  15. G. Da Prato, Kolmogorov equations for stochastic PDEs, Birkhäuser, 2004.

  16. G. Da Prato, M. Röckner, F. Wang, Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups. J. Funct. Anal. 257 (2009), 992–1017.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Cambridge University Press, 1992.

  18. R.J. Di Perna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511–548.

    Article  MathSciNet  Google Scholar 

  19. A. Figalli, Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254 (2008), no. 1, 109–153.

    Google Scholar 

  20. C. Le Bris, P.L. Lions, Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients. Comm. Partial Diff. Equat. 33 (2008), no. 7–9, 1272–1317.

    Google Scholar 

  21. T. Lorenz, Radon measures solving the Cauchy problem of the nonlinear transport equation. IWR Preprint, 2007.

  22. S. Maniglia, Probabilistic representation and uniqueness results for measure-valued solutions of transport equation. J. Math. Pures Appl. 87 (2007), 601–626.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Da Prato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogachev, V., Da Prato, G. & Röckner, M. Existence and uniqueness of solutions for Fokker–Planck equations on Hilbert spaces. J. Evol. Equ. 10, 487–509 (2010). https://doi.org/10.1007/s00028-010-0058-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-010-0058-y

Mathematics Subject Classification (2000)

Keywords

Navigation