Skip to main content
Log in

Maximal time regularity for degenerate evolution integro-differential equations

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We provide maximal time regularity properties for the solutions to a class of degenerate first-order integro-differential Cauchy problems in a Banach space X. In particular, we show that an additional condition of space regularity on the data it suffices for restoring the loss of time regularity which arises naturally when dealing with the degenerate case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al Horani M., Favini A.: An identification problem for first-order degenerate differential equations. J. Optim. Theory Appl. 130, 41–60 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Colombo F., Lorenzi A.: An identification problem related to parabolic integrodifferential equations with non commuting spatial operators. J. Inverse Ill-Posed Probl. 8, 505–540 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Colombo F., Guidetti D.: A global in time existence and uniqueness result for a semilinear integrodifferential parabolic inverse problems in Sobolev spaces. Math. Mod. Meth. Appl. Sci. 17, 537–565 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Da Prato: Abstract differential equations, maximal regularity and linearization, Proc. Sympos. Pure Math. 45 (1986), Part 1, 359–370.

  5. Di Blasio G.: Parabolic Volterra integrodifferential equations with non continuous data. Ann. Univ. Ferrara - Sez. VII - Sc. Mat. Suppl. 41, 29–49 (1995)

    MathSciNet  Google Scholar 

  6. Favaron A.: Optimal time and space regularity for solutions of degenerate differential equations. Cent. Eur. J. Math. 7, 249–271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Favini A., Yagi A.: Multivalued linear operators and degenerate evolution equations. Ann. Mat. Pura Appl. (IV) 163, 353–384 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Favini A., Yagi A.: Degenerate Differential Equations in Banach Spaces. Marcel Dekker, Inc., New York-Basel-Hong Kong (1999)

    MATH  Google Scholar 

  9. Favini A., Lorenzi A., Tanabe H.: Singular integro-differential equations of parabolic type. Adv. Diff. Eqns. 7, 769–798 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Favini A., Lorenzi A.: Singular integro-differential equations of parabolic type and inverse problems. Math. Mod. Meth. Appl. Sci. 13, 1745–1766 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Favini A., Yagi A.: Quasilinear degenerate evolution equations in Banach spaces J. Evol. Equ. 4, 421–449 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Favini A., Lorenzi A.: Identification problems for singular integro-differential equations of parabolic type I. Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal. 12, 303–328 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Favini A., Lorenzi A., Tanabe H.: Singular evolution integro-differential equations with kernels defined on bounded intervals Appl. Anal. 84, 463–497 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Favini A., Lorenzi A., Tanabe H., Yagi A.: An L p-approach to singular linear parabolic equations in bounded domain. Osaka J. Math. 42, 385–406 (2005)

    MathSciNet  MATH  Google Scholar 

  15. D. Gilbarg, N. S.Trudinger: Elliptic Partial Differential Equations,Reprint of the 1998 Ed., Springer-Verlag Berlin Heidelberg, 2001.

  16. Grasselli M.: An identification problem for a linear integro-differential equation occurring in heat flow Math. Meth. Appl. Sci. 15, 167–186 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Janno J., von Wolfersdorf L.: Identification of weakly singular memory kernels in heat conduction Z. Angew. Math. Mech. 77, 243–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lorenzi A., Sinestrari E.: An inverse problem in the theory of materials with memory. Nonlinear Anal., Theory, Meth. Appl. 12, 1317–1335 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Lorenzi, E. Sinestrari: Stability result for a partial integro-differential inverse problem, Pitman Research Notes in Math. 190 (1989), 271–294 (Proceedings of the Meeting on “Volterra Integro-differential Equations in Banach Spaces and Applications”, Trento (1987)).

  20. Lorenzi A., Tanabe H.: Inverse and direct problems for nonautonomous degenerate integro-differential equations of parabolic type with Dirichlet boundary conditions. Lect. Notes Pure Appl. Math. 251, 197–243 (2006)

    Article  MathSciNet  Google Scholar 

  21. Lunardi A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser Verlag, Basel (1995)

    MATH  Google Scholar 

  22. Sinestrari E.: On the abstract Cauchy problem of parabolic type in spaces of continuous functions. J. Math. Anal. Appl. 107, 16–66 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Taira K.: On a degenerate oblique derivative problem with interior boundary conditions. Proc. Japan Acad. 52, 484–487 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Taira K.: The theory of semigroups with weak singularities and its application to partial differential equations Tsukuba J. Math. 13, 513–562 (1989)

    MathSciNet  MATH  Google Scholar 

  25. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North Holland Publ. Co., Amsterdam (1978)

    Google Scholar 

  26. von Wahl W.: Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen höldersteiger Funktionen Nachr. Akad. Wiss. Göttingen Math-Phys. Kl. 11, 231–258 (1972) (German)

    Google Scholar 

  27. von Wahl W.: Neue Resolventenabschätzungen für elliptische Differentialoperatoren und semilineare parabolische Gleichungen. Abh. Math. Sem. Univ. Hamburg 46, 179–204 (1977) (German)

    Article  MathSciNet  MATH  Google Scholar 

  28. von Wolfersdorf L.: On identification of memory kernels in linear theory of heat conduction. Math. Meth. Appl. Sci. 17, 919–932 (1994)

    Article  MATH  Google Scholar 

  29. C. Wild: Semi-groupes de croissance α < 1 holomorphes, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A437–A440 (French).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Favaron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favaron, A., Favini, A. Maximal time regularity for degenerate evolution integro-differential equations. J. Evol. Equ. 10, 377–412 (2010). https://doi.org/10.1007/s00028-010-0053-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-010-0053-3

Mathematics Subject Classification (2000)

Keywords

Navigation