Abstract
We show here that decay estimates can be derived simply by integral inequalities. This result allows us to prove these kind of estimates, with an unified proof, for different nonlinear problems, thus obtaining both well known results (for example for the p-Laplacian equation and the porous medium equation) and new decay estimates.
Similar content being viewed by others
References
Aronson D.G., Peletier L.A.: Large time behaviour of solutions of the porous medium equation in bounded domains. J. Diff. Eqns. 39, 378–412 (1981)
Ph. Benilan, Opérateurs accrétifs et semi-groupes dans les espaces L p (1 ≤ p ≤ ∞), France-Japan Seminar, Tokyo, 1976.
Ph. Benilan, Equations d’evolution dans un espace de Banach quelconque et applications, thése Orsay 1972.
Ph. Benilan, M.G. Crandall, M. Pierre, Solutions of the porous medium in \({\mathbb{R}^{N}}\) under optimal conditions on initial values, Indiana Univ. Math. V. 33 (1984), 51–87.
Bonforte M., Cipriani F., Grillo G.: Ultracontractivity and convergence to equilibrium for supercritical quasilinear parabolic equations on Riemannian manifolds. Advances in Diff. Equations, vol. 8, n. 7, 843–872 (2003)
Bonforte M., Grillo G.: Super and ultracontractive bounds for doubly nonlinear evolution equations. Rev. Mat. Iberoamericana 22(n.1), 11–129 (2006)
Bonforte M., Grillo G.: Asymptotics of the porous media equation via Sobolev inequalities. Journal of Functional Analysis 225, 33–62 (2005)
Bonforte M., Grillo G., Singular evolution on manifolds, their smoothing properties, and Sobolev inequalities. Discrete and continuous dynamical systems, Supplement (2007), 130–137.
M. Bonforte, G. Grillo, Ultracontractive bounds for nonlinear evolution equations governed by the subcritical p-Laplacian, Progress in Nonlinear Differential Equations and their applications, vol. 61, (2005), 15–28.
Bonforte M., Grillo G., Vazquez J.L.: Fast diffusion flow on manifolds of nonpositive curvature. J. Evol. Equ. 8(n. 1), 99–128 (2008)
Brezis H.: Analyse fonctionelle. Masson, Paris (1983)
H. Brezis, T. Cazenave, Notes, unpublished.
Brezis H., Crandall M.G.: Uniqueness of solutions of the initial-value problems for \({u_t - \triangle \varphi (u) = 0}\) . J. Math. pures et appl., 58, 153–163 (1979)
Cipriani F., Grillo G.: Uniform bounds for solutions to quasilinear parabolic equations. J. Differential Equations 177, 209–234 (2001)
Davies E.B.: Heat Kernel and Spectral Theory. Cambridge University Press, Cambridge, UK (1989)
Davies E.B., Simon B.: Ultracontractivity and the heat kernel for Schrodinger operators and Dirichlet Laplacian. J. Funct. Anal. 59, 335–395 (1984)
Del Pino M., Dolbeault J., Gentil I.: Nonlinear diffusions, hypercontractivity and the optimal L p-Euclidean logarithmic Sobolev inequality. J. Math. Anal. Appl. 293, 375–388 (2004)
Di Benedetto E.: Degenerate parabolic equations. Springer-Verlag, New York (1993)
Di Benedetto E., Herrero M.A.: On the Cauchy problem and initial traces for a degenerate parabolic equation. Trans. AMS 314, 187–224 (1989)
Di Benedetto E., Herrero M.A.: Non negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when 1 < p < 2. Arch. Rational Mech. Anal. 111(3), 225–290 (1990)
Gross L.: Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061–1083 (1975)
Herrero M.A., Pierre M.: The Cauchy problem for \({u_t = \triangle u^m}\) when 0 < m < 1. Trans. A.M.S. 291, 145–158 (1985)
M. A. Herrero, J. L. Vazquez, Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem, Ann. Fac. Sci., Toulose Math. (5) 3, n.2 (1981), 113–127.
A. S. Kalashnikov, Cauchy’s problem in classes of increasing functions for certain quasi-linear degenerate parabolic equations of the second order, Diff. Uravneniya 9, n. 4 (1973), 682–691.
O. Ladyženskaja, V. A. Solonnikov, N. N. Ural’ceva, Linear and quasilinear equations of parabolic type, Translations of the American Mathematical Society, American Mathematical Society, Providence, (1968).
M.M. Porzio, Existence of solutions for some “noncoercive” parabolic equations, Discrete and Continuous Dynamical Systems, Vol. 5, n. 3, (1999), pp. 553–568.
Porzio M.M., Pozio M.A.: Parabolic equations with non–linear, degenerate and space–time dependent operators. Journal of Evolution Equations 8, 31–70 (2008)
Saá J.: Large time behaviour of the doubly nonlinear porous medium equation. J. Math. Anal. Appl. 155, 345–363 (1991)
Troisi M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ricerche Mat., 18, 3–24 (1969)
J. L. Vazquez, Smoothing and decay estimates for nonlinear diffusion equations, Oxford University press 2006.
Vazquez J.L.: The porous medium equation. Oxford Math. Monographs, Clarendon press, Oxford (2007)
L. Veron, Effects regularisants des semi-groupes non linéaires dans des espaces de Banach, Ann. Fac. Sci., Toulose Math. (5) 1, n.2 (1979), 171–200.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Porzio, M.M. On decay estimates. J. Evol. Equ. 9, 561–591 (2009). https://doi.org/10.1007/s00028-009-0024-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00028-009-0024-8