Skip to main content
Log in

On decay estimates

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We show here that decay estimates can be derived simply by integral inequalities. This result allows us to prove these kind of estimates, with an unified proof, for different nonlinear problems, thus obtaining both well known results (for example for the p-Laplacian equation and the porous medium equation) and new decay estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson D.G., Peletier L.A.: Large time behaviour of solutions of the porous medium equation in bounded domains. J. Diff. Eqns. 39, 378–412 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ph. Benilan, Opérateurs accrétifs et semi-groupes dans les espaces L p (1 ≤ p ≤ ∞), France-Japan Seminar, Tokyo, 1976.

  3. Ph. Benilan, Equations d’evolution dans un espace de Banach quelconque et applications, thése Orsay 1972.

  4. Ph. Benilan, M.G. Crandall, M. Pierre, Solutions of the porous medium in \({\mathbb{R}^{N}}\) under optimal conditions on initial values, Indiana Univ. Math. V. 33 (1984), 51–87.

  5. Bonforte M., Cipriani F., Grillo G.: Ultracontractivity and convergence to equilibrium for supercritical quasilinear parabolic equations on Riemannian manifolds. Advances in Diff. Equations, vol. 8, n. 7, 843–872 (2003)

    MathSciNet  Google Scholar 

  6. Bonforte M., Grillo G.: Super and ultracontractive bounds for doubly nonlinear evolution equations. Rev. Mat. Iberoamericana 22(n.1), 11–129 (2006)

    MathSciNet  Google Scholar 

  7. Bonforte M., Grillo G.: Asymptotics of the porous media equation via Sobolev inequalities. Journal of Functional Analysis 225, 33–62 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bonforte M., Grillo G., Singular evolution on manifolds, their smoothing properties, and Sobolev inequalities. Discrete and continuous dynamical systems, Supplement (2007), 130–137.

  9. M. Bonforte, G. Grillo, Ultracontractive bounds for nonlinear evolution equations governed by the subcritical p-Laplacian, Progress in Nonlinear Differential Equations and their applications, vol. 61, (2005), 15–28.

  10. Bonforte M., Grillo G., Vazquez J.L.: Fast diffusion flow on manifolds of nonpositive curvature. J. Evol. Equ. 8(n. 1), 99–128 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brezis H.: Analyse fonctionelle. Masson, Paris (1983)

    Google Scholar 

  12. H. Brezis, T. Cazenave, Notes, unpublished.

  13. Brezis H., Crandall M.G.: Uniqueness of solutions of the initial-value problems for \({u_t - \triangle \varphi (u) = 0}\) . J. Math. pures et appl., 58, 153–163 (1979)

    MATH  MathSciNet  Google Scholar 

  14. Cipriani F., Grillo G.: Uniform bounds for solutions to quasilinear parabolic equations. J. Differential Equations 177, 209–234 (2001)

    Article  MathSciNet  Google Scholar 

  15. Davies E.B.: Heat Kernel and Spectral Theory. Cambridge University Press, Cambridge, UK (1989)

    Google Scholar 

  16. Davies E.B., Simon B.: Ultracontractivity and the heat kernel for Schrodinger operators and Dirichlet Laplacian. J. Funct. Anal. 59, 335–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Del Pino M., Dolbeault J., Gentil I.: Nonlinear diffusions, hypercontractivity and the optimal L p-Euclidean logarithmic Sobolev inequality. J. Math. Anal. Appl. 293, 375–388 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Di Benedetto E.: Degenerate parabolic equations. Springer-Verlag, New York (1993)

    Google Scholar 

  19. Di Benedetto E., Herrero M.A.: On the Cauchy problem and initial traces for a degenerate parabolic equation. Trans. AMS 314, 187–224 (1989)

    Article  MathSciNet  Google Scholar 

  20. Di Benedetto E., Herrero M.A.: Non negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when 1 < p < 2. Arch. Rational Mech. Anal. 111(3), 225–290 (1990)

    Article  MathSciNet  Google Scholar 

  21. Gross L.: Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061–1083 (1975)

    Article  MathSciNet  Google Scholar 

  22. Herrero M.A., Pierre M.: The Cauchy problem for \({u_t = \triangle u^m}\) when 0 < m < 1. Trans. A.M.S. 291, 145–158 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  23. M. A. Herrero, J. L. Vazquez, Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem, Ann. Fac. Sci., Toulose Math. (5) 3, n.2 (1981), 113–127.

  24. A. S. Kalashnikov, Cauchy’s problem in classes of increasing functions for certain quasi-linear degenerate parabolic equations of the second order, Diff. Uravneniya 9, n. 4 (1973), 682–691.

    Google Scholar 

  25. O. Ladyženskaja, V. A. Solonnikov, N. N. Ural’ceva, Linear and quasilinear equations of parabolic type, Translations of the American Mathematical Society, American Mathematical Society, Providence, (1968).

  26. M.M. Porzio, Existence of solutions for some “noncoercive” parabolic equations, Discrete and Continuous Dynamical Systems, Vol. 5, n. 3, (1999), pp. 553–568.

  27. Porzio M.M., Pozio M.A.: Parabolic equations with non–linear, degenerate and space–time dependent operators. Journal of Evolution Equations 8, 31–70 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Saá J.: Large time behaviour of the doubly nonlinear porous medium equation. J. Math. Anal. Appl. 155, 345–363 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. Troisi M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ricerche Mat., 18, 3–24 (1969)

    MATH  MathSciNet  Google Scholar 

  30. J. L. Vazquez, Smoothing and decay estimates for nonlinear diffusion equations, Oxford University press 2006.

  31. Vazquez J.L.: The porous medium equation. Oxford Math. Monographs, Clarendon press, Oxford (2007)

    MATH  Google Scholar 

  32. L. Veron, Effects regularisants des semi-groupes non linéaires dans des espaces de Banach, Ann. Fac. Sci., Toulose Math. (5) 1, n.2 (1979), 171–200.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Michaela Porzio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porzio, M.M. On decay estimates. J. Evol. Equ. 9, 561–591 (2009). https://doi.org/10.1007/s00028-009-0024-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-009-0024-8

Keywords

Navigation