Skip to main content

Advertisement

Log in

Plankton assemblages in a tropical West African estuary

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The taxonomic composition, abundance, diversity and spatial distribution of phytoplankton and zooplankton, as well as the prevailing hydrographic conditions, were examined in the Whin Estuary, which is considered one of the most pristine and productive coastal ecosystems of Ghana, which is located on the Gulf of Guinea. Hydrographic and plankton variables were determined along the gradient of the estuary between March and July 2022 across two seasons and tidal periods. A total of 50 genera of phytoplankton and 27 genera of zooplankton were recorded across the two seasons and sampling periods. Diatoms and copepods dominated the plankton communities across the estuary. Plankton genera such as Navicula, Nitzschia, Thalassiosira, Cyclops, Paracalanus and Temora were recorded across all the seasons and tidal periods, despite the varying hydrographic conditions. The environmental variables varied across the seasons, tidal periods and sampling stations in the estuary. For instance, temperature, DO, transparency, and chlorophyll a varied significantly (p < 0.05) across both the seasons and tidal periods. pH values were significantly (p < 0.05) lower in the rainy season compared to the dry season. There was a strong salinity gradient across the estuary, with the upper reaches dominated by freshwater organisms, such as cladocerans and cyanobacteria, and the lower reaches by marine organisms, primarily diatoms and copepods. In sum, the results reported here are important as they highlight the distribution of plankton communities in a tropical estuarine ecosystem and can serve as a reference for the management of tropical brackish ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request.

References

  • Abdul WO, Adekoya EO, Ademolu KO, Omoniyi IT, Odulate DO, Akindokun TE, Olajide AE (2016) The effects of environmental parameters on zooplankton assemblages in tropical coastal estuary, South-west, Nigeria. Egypt J Aquat Res 42(3):281–287. https://doi.org/10.1016/j.ejar.2016.05.005

    Article  Google Scholar 

  • Abdul WO, Omoniyi IT, Oguntuase KE, Bada SB, Adekoya EO, Braide AF (2018) Influence of environmental variables on the abundance and distribution of phytoplankton: a case study of Lekki lagoon, Sub-Saharan Africa. Egypt J Aquat Biol Fish 21(4):97–110. https://doi.org/10.21608/ejabf.2018.7724

    Article  Google Scholar 

  • Addico G, Amu-Mensah FK, Akrong MO, Amu-Mensah MA, Darko H (2018) Phytoplankton species diversity and biomass and its impact on the sustainable management of Lake Bosomtwe in the Ashanti Region of Ghana. Afr J Environ Sci Technol 12(10):377–383

    Google Scholar 

  • Agyekum KA, Wiafe G, Appiah KA (2008) Diversity and spatial distribution of phytoplankton in a tropical coastal lagoon. J Ghana Sci Assoc 10(1):8–14

    Google Scholar 

  • Aheto D, Mensah E, Aggrey-Fynn J, Obodai EA, Mensah CJ, Okyere I, Okyere SPK (2011) Spatio-temporal analysis of two coastal wetland systems in Ghana: addressing ecosystem vulnerability and implications for fisheries development in the context of climate and land use changes. Arch Appl Sci Res 3(3):499–513

    Google Scholar 

  • Alhassan EH (2015) Seasonal variations in phytoplankton diversity in the Bui dam area of the Black Volta in Ghana during the pre- and post-impoundment periods. Rev Biol Trop 63(1):13–22

    Article  PubMed  Google Scholar 

  • Ankrah J (2018) Climate change impacts and coastal livelihoods; an analysis of fishers of coastal Winneba, Ghana. Ocean Coast Manag 161:141–146

    Article  Google Scholar 

  • Atindana SA, Ofori-Danson PK, Brucet S (2019) Modelling the effects of climate change on shellfish production in marine artisanal fisheries of Ghana. AAS Open Res 2:16. https://doi.org/10.12688/aasopenres.12956.1

    Article  Google Scholar 

  • Atindana SA, Fagbola O, Ajani E, Alhassan EH, Ampofo-Yeboah A (2020) Coping with climate variability and non-climate stressors in the West African oyster (Crassostrea tulipa) fishery in coastal Ghana. Maritime Studies 19(1):81–92. https://doi.org/10.1007/s40152-019-00132-7

    Article  Google Scholar 

  • Ayoubi HE, Failler P (2012) Fishery and aquaculture industry in Ghana. Series Rep. https://doi.org/10.13140/RG.2.1.1624.3362

    Article  Google Scholar 

  • Azhikodan G, Yokoyama K (2016) Spatio-temporal variability of phytoplankton (chlorophyll a) in relation to salinity, suspended sediment concentration, and light intensity in a macrotidal estuary. Cont Shelf Res 126:15–26

    Article  Google Scholar 

  • Bainbridge V (1972) The zooplankton of the Gulf of Guinea. Bull Mar Ecol 8:61–97

    Google Scholar 

  • Barnes BD, Wurtsbaugh WA (2015) The effects of salinity on plankton and benthic communities in the Great Salt Lake, Utah, USA: a microcosm experiment. Can J Fish Aquat Sci 72(6):807–817

    Article  CAS  Google Scholar 

  • Bauder AG, Cembella AD, Bricelj VM, Quilliam MA (2001) Uptake and fate of diarrhetic shellfish poisoning toxins from the dinoflagellate Prorocentrum lima in the bay scallop Argopecten irradians. Mar Ecol Prog Ser 213:39–52

    Article  CAS  Google Scholar 

  • Benjamin LV, Padua S, Bhavan SG (2023) Fish diversity, composition, and guild structure influenced by the environmental drivers in a small temporarily closed tropical estuary from the western coast of India. Environ Sci Pollut Res 30(50):108889–108906

    Article  Google Scholar 

  • Bharathi MD, Venkataramana V, Sarma VVSS (2022) Phytoplankton community structure is governed by salinity gradient and nutrient composition in the tropical estuarine system. Cont Shelf Res 234:104643. https://doi.org/10.1016/j.csr.2021.104643

    Article  Google Scholar 

  • Bianchi TS (2007) Biogeochemistry of estuaries. Oxford University Press

    Google Scholar 

  • Biney CA (1990) A review of some characteristics of freshwater and coastal ecosystems in Ghana. Hydrobiologia 208:45–53

    Article  CAS  Google Scholar 

  • Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, Hutchins DA, Kudela RM, Litchman E, Mulholland MR, Passow U, Strzepek RF, Whittaker KA, Yu E, Thomas MK (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters—outcome of a scientific community-wide study. PLoS ONE 8(5):e63091. https://doi.org/10.1371/journal.pone.0063091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carstensen J, Klais R, Cloern JE (2015) Phytoplankton blooms in estuarine and coastal waters: Seasonal patterns and key species. Estuar Coast Shelf Sci 162:98–109

    Article  Google Scholar 

  • Chakraborty P, Acharyya T, Babu PR, Bandyopadhyay D (2011) Impact of salinity and pH on phytoplankton communities in a tropical freshwater system: an investigation with pigment analysis by HPLC. J Environ Monit 13(3):614–620

    Article  CAS  PubMed  Google Scholar 

  • Chrétiennot-Dinet MJ, Sournia A, Ricard M, Billard C (1993) A classification of the marine phytoplankton of the world from class to genus. Phycologia 32(3):159–179

    Article  Google Scholar 

  • Chuku EO, Yankson K, Obodai EA, Acheampong E, Aheto DW (2023) Spatiotemporal spatfall dynamics and prevailing estuarine conditions for optimal oyster (Crassostrea tulipa) spat availability in selected Gulf of Guinea brackish systems. Front Mar Sci 10:1075313. https://doi.org/10.3389/fmars.2023.1075313

    Article  Google Scholar 

  • Cloern JE (2018) Why large cells dominate estuarine phytoplankton: large cells dominate in estuaries. Limnol Oceanogr 63(S1):S392–S409. https://doi.org/10.1002/lno.10749

    Article  Google Scholar 

  • Coastal Resource Centre (CRC) and Friends of the Nation (FON) (2010) Rapid biodiversity assessment on the Essei and Butuah lagoons and Whin river estuary in the Sekondi-Takoradi metropolis of the Western Region of Ghana. Coastal Resource Center in Partnership with Friends of the Nation on the Hεn Mpoano Initiative in Ghana

  • Connelly KA, Rollwagen-Bollens G, Bollens SM (2020) Seasonal and longitudinal variability of zooplankton assemblages along a river-dominated estuarine gradient. Estuar Coast Shelf Sci 245:106980

    Article  Google Scholar 

  • Dadzie-Paintsil E, Mensah JV (2022) Effects of urbanization on coastal wetlands in the Sekondi-Takoradi metropolis, Ghana. Indo Pacific J Ocean Life 6(2):94–105

    Article  Google Scholar 

  • David V, Selleslagh J, Nowaczyk A, Dubois S, Bachelet G, Blanchet H, Gouillieux B, Lavesque N, Leconte M, Savoye N, Sautour B, Lobry J (2016) Estuarine habitats structure zooplankton communities: implications for the pelagic trophic pathways. Estuar Coast Shelf Sci 179:99–111. https://doi.org/10.1016/j.ecss.2016.01.022

    Article  Google Scholar 

  • Davies CH, Beckley LE, Richardson AJ (2022) Copepods and mixotrophic Rhizaria dominate zooplankton abundances in the oligotrophic Indian Ocean. Deep Sea Res Part II 202:105136. https://doi.org/10.1016/j.dsr2.2022.105136

    Article  Google Scholar 

  • Dzakpasu MF, Yankson K (2015) Hydrographic characteristics of two estuaries on the south western coast of Ghana. New York Sci J 8(4):60–69

    Google Scholar 

  • Dzakpasu MFA (2019) Ecological assessment of some coastal lagoons and estuaries in Ghana: abiotic and biotic approaches. PhD thesis, University of Cape Coast

  • El Gammal MAM, Nageeb M, Al-Sabeb S (2017) Phytoplankton abundance in relation to the quality of the coastal water—Arabian Gulf, Saudi Arabia. Egypt J Aquat Res 43(4):275–282. https://doi.org/10.1016/j.ejar.2017.10.004

    Article  Google Scholar 

  • Eliane EBR, Vivien NEO, Polycarpe TKR, Bertrand SNP, Siméon T, Mamert OF, Lié NTN, Hubert ZTS (2021) Zooplankton dynamics of the Kienke estuary (Kribi, South Region of Cameroon): importance of physico-chemical parameters. Open J Ecol 11(12):837–869. https://doi.org/10.4236/oje.2021.1112051

    Article  Google Scholar 

  • Elliott M, Whitfield AK (2011) Challenging paradigms in estuarine ecology and management. Estuar Coast Shelf Sci 94(4):306–314

    Article  Google Scholar 

  • Elliott M, Day JW, Ramachandran R, Wolanski E (2019) A synthesis: what is the future for coasts, estuaries, deltas and other transitional habitats in 2050 and beyond? In: Coasts and estuaries. Elsevier, pp 1–28

    Google Scholar 

  • Falkowski P (2012) Ocean science: the power of plankton. Nature 483(7387):S17–S20. https://doi.org/10.1038/483S17a

    Article  CAS  PubMed  Google Scholar 

  • Fatema K, Wan Maznah WO, Isa MM (2015) Spatial variation of water quality parameters in a mangrove estuary. Int J Environ Sci Technol 12(6):2091–2102. https://doi.org/10.1007/s13762-014-0603-2

    Article  CAS  Google Scholar 

  • Fidor A, Konkel R, Mazur-Marzec H (2019) Bioactive peptides produced by cyanobacteria of the genus Nostoc: a review. Mar Drugs 17(10):561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher NA (1993) Volunteer estuary monitoring: a methods manual. US Environmental Protection Agency Office of Water, Office of Wetlands

    Google Scholar 

  • Hasan J, Shaha DC, Kundu SR, Yusoff FM, Cho Y-K, Haque F, Salam MA, Ahmed S, Wahab MdA, Ahmed M, Hossain MdI, Afrad MdSI (2022) Phytoplankton community in relation to environmental variables in the tidal mangrove creeks of the Pasur river estuary Bangladesh. Conservation 2(4):587–612. https://doi.org/10.3390/conservation2040039

    Article  Google Scholar 

  • Hernández Ruiz L, Ekumah B, Asiedu DA, Albani G, Acheampong E, Jónasdóttir SH, Koski M, Nielsen TG (2021) Climate change and oil pollution: a dangerous cocktail for tropical zooplankton. Aquat Toxicol 231:105718. https://doi.org/10.1016/j.aquatox.2020.105718

    Article  CAS  PubMed  Google Scholar 

  • Hernando M, Schloss IR, Malanga G, Almandoz GO, Ferreyra GA, Aguiar MB, Puntarulo S (2015) Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition. J Exp Mar Biol Ecol 466:110–119. https://doi.org/10.1016/j.jembe.2015.02.012

    Article  CAS  Google Scholar 

  • Heudre D, Wetzel CE, Van de Vijver B, Moreau L, Ector L (2021) Brackish diatom species (Bacillariophyta) from rivers of Rhin-Meuse basin in France. Botany Letters 168(1):56–84

    Article  CAS  Google Scholar 

  • Hoppenrath M, Elbrächter M, Drebes G (2009) Marine phytoplankton. Kleine Senckenberg-Reihe 49:1–264

    Google Scholar 

  • Jeyaraj N, Joseph SA, Suhaila A, Divya L, Ravikumar S (2014) Distribution and abundance of zooplankton in estuarine regions along the northern Kerala southwest coast of India. Ecologia 4(2):26–43. https://doi.org/10.3923/ecologia.2014.26.43

    Article  Google Scholar 

  • Jonah FE, Mensah EA, Edziyie RE, Agbo NW, Adjei-Boateng D (2016) Coastal erosion in Ghana: causes, policies, and management. Coast Manag 44(2):116–130. https://doi.org/10.1080/08920753.2016.1135273

    Article  Google Scholar 

  • Karpowicz M, Ejsmont-Karabin J, Kozłowska J, Feniova I, Dzialowski AR (2020) Zooplankton community responses to oxygen stress. Water 12(3):706. https://doi.org/10.3390/w12030706

    Article  CAS  Google Scholar 

  • Lalèyè AP, Villanueva MC, Entsua MM, Moreau J (2007) A review of the aquatic living resources in Gulf of Guinea lagoons, with particular emphasis on fisheries management issues. J Afrotropical Zool 3:123–136

    Google Scholar 

  • Lazar N, Yankson K, Blay J, Ofori-Danson P, Markwei P, Agbogah K, Bannerman P, Sotor M, Yamoah KK, Bilisini WB (2017) Status of the small pelagic stocks in Ghana-2016. Scientific and Technical Working Group, USAID/Ghana Sustainable Fisheries Management Project (SFMP), Coastal Resources Center, Graduate School of Oceanography, University of Rhode Island. GH2014_ACT150_CRC. p. 16

  • Li X, Lu C, Zhang Y, Zhao H, Wang J, Liu H, Yin K (2020) Low dissolved oxygen in the Pearl river estuary in summer: long-term spatio-temporal patterns, trends, and regulating factors. Mar Pollut Bull 151:110814. https://doi.org/10.1016/j.marpolbul.2019.110814

    Article  CAS  PubMed  Google Scholar 

  • Liu G, He W, Cai S (2020) Seasonal variation of dissolved oxygen in the southeast of the Pearl river estuary. Water 12(9):2475. https://doi.org/10.3390/w12092475

    Article  CAS  Google Scholar 

  • Lomartire S, Marques JC, Gonçalves AMM (2021) The key role of zooplankton in ecosystem services: a perspective of interaction between zooplankton and fish recruitment. Ecol Ind 129:107867. https://doi.org/10.1016/j.ecolind.2021.107867

    Article  Google Scholar 

  • Margalef R (1958) Information theory in ecology. Int J Gen Syst 3:36–71

    Google Scholar 

  • Miththapala S (2013) Lagoons and estuaries. Coastal ecosystems series. IUCN Sri Lanka Country Office

    Google Scholar 

  • Molinero JC, Ibanez F, Nival P, Buecher E, Souissi S (2005) North Atlantic climate and northwestern Mediterranean plankton variability. Limnol Oceanogr 50(4):1213–1220. https://doi.org/10.4319/lo.2005.50.4.1213

    Article  Google Scholar 

  • Murphy GEP, Romanuk TN, Worm B (2020) Cascading effects of climate change on plankton community structure. Ecol Evol 10(4):2170–2181. https://doi.org/10.1002/ece3.6055

    Article  PubMed  PubMed Central  Google Scholar 

  • Muylaert K, Sabbe K, Vyverman W (2009) Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/the Netherlands). Estuar Coast Shelf Sci 82(2):335–340

    Article  CAS  Google Scholar 

  • Neokye EO, Dossou S, Iniga M, Alabi-Doku BN (2021) The role of oceanic environmental conditions on catch of Sardinella spp. in Ghana. Reg Stud Marine Sci 44:101768

    Google Scholar 

  • Nunoo FK, Agyekumhene A (2022) Mangrove degradation and management practices along the coast of Ghana. Agric Sci 13(10):1057–1079

    Google Scholar 

  • Okorafor KA, Effanga EO, Andem AB, George UU, Amos DI (2013) Spatial variation in physical and chemical parameters and macro-invertebrates in the intertidal regions of Calabar River, Nigeria. Greener J Geol Earth Sci 1(2):63–72

    Article  Google Scholar 

  • Okyere I (2019) Implications of the deteriorating environmental conditions of River Pra estuary (Ghana) for marine fish stocks. J Fisher Coastal Manag 1(1):15. https://doi.org/10.5455/jfcom.20190315062201

    Article  Google Scholar 

  • Okyere I, Nortey DDN (2018) Assessment of the ecological health status of River Pra estuary (Ghana) and adjoining wetland using physico-chemical conditions and macroinvertebrate bioindicators. West Afr J Appl Ecol 26(2):44–55

    Google Scholar 

  • Olli K, Ptacnik R, Klais R, Tamminen T (2019) Phytoplankton species richness along coastal and estuarine salinity continua. Am Nat 194(2):E41–E51

    Article  PubMed  Google Scholar 

  • Osei K, Chuku EO, Effah E, Kent K, Crawford B (2021) Participatory assessment of shellfisheries in the estuarine and mangrove ecosystems of Ghana. Centre for Coastal Management (Africa Centre of Excellence in Coastal Resilience) University of Cape Coast, Ghana and Coastal Resources Center, Graduate School of Oceanography, University of Rhode Island

  • Paturej E, Gutkowska A, Koszałka J, Bowszys M (2017) Effect of physicochemical parameters on zooplankton in the brackish, coastal Vistula Lagoon. Oceanologia 59(1):49–56. https://doi.org/10.1016/j.oceano.2016.08.001

    Article  Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144. https://doi.org/10.1016/0022-5193(66)90013-0

    Article  Google Scholar 

  • Pliński M, Jóźwiak T (1999) Temperature and N:P ratio as factors causing blooms of blue-green algae in the Gulf of Gdańsk. Oceanologia 41:73–80

    Google Scholar 

  • Potapova M (2011) Patterns of diatom distribution in relation to salinity. The Diatom World. https://doi.org/10.1007/978-94-007-1327-7

    Article  Google Scholar 

  • Reynolds CS, Padisák J (2013) Plankton, status and role of. Encyclopedia of biodiversity. Elsevier, pp 24–38

    Chapter  Google Scholar 

  • Scanes E, Scanes PR, Ross PM (2020) Climate change rapidly warms and acidifies Australian estuaries. Nat Commun 11(1):1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheren PA, Ibe AC, Janssen FJ, Lemmens AM (2002) Environmental pollution in the Gulf of Guinea—a regional approach. Mar Pollut Bull 44(7):633–641. https://doi.org/10.1016/S0025-326X(01)00305-8

    Article  CAS  PubMed  Google Scholar 

  • Selleslagh J, Amara R (2008) Environmental factors structuring fish composition and assemblages in a small macrotidal estuary (eastern English Channel). Estuar Coast Shelf Sci 79(3):507–517. https://doi.org/10.1016/j.ecss.2008.05.006

    Article  Google Scholar 

  • Seuront L (2014) Copepods: diversity, habitat and behavior. Nova

    Google Scholar 

  • Shannon CE, Weaver W (1998) The mathematical theory of communication. University of Illinois Press

    Google Scholar 

  • Sheaves M, Baker R, Nagelkerken I, Connolly RM (2015) True value of estuarine and coastal nurseries for fish: incorporating complexity and dynamics. Estuaries Coasts 38(2):401–414. https://doi.org/10.1007/s12237-014-9846-x

    Article  Google Scholar 

  • Simier M, Osse OJF, Sadio O, Ecoutin J (2021) Biology and ecology of sea catfish (Ariidae) of estuarine, lagoon and coastal ecosystems in West Africa. J Fish Biol 99(2):629–643. https://doi.org/10.1111/jfb.14751

    Article  PubMed  Google Scholar 

  • Sournia A, Chrdtiennot-Dinet M-J, Ricard M (1991) Marine phytoplankton: how many species in the world ocean? J Plankton Res 13(5):1093–1099

    Article  Google Scholar 

  • Su J, Cai W-J, Brodeur J, Chen B, Hussain N, Yao Y, Ni C, Testa JM, Li M, Xie X (2020) Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling. Nat Geosci 13(6):441–447

    Article  CAS  Google Scholar 

  • Sylla MB, Elguindi N, Giorgi F, Wisser D (2016) Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century. Clim Change 134(1–2):241–253

    Article  Google Scholar 

  • Taffs KH, Saunders KM, Logan B (2017) Diatoms as indicators of environmental change in estuaries. In: Weckström K, Saunders KM, Gell PA, Skilbeck CG (eds) Applications of paleoenvironmental techniques in estuarine studies. Springer, Netherlands, pp 277–294

    Chapter  Google Scholar 

  • Tan Y, Huang L, Chen Q, Huang X (2004) Seasonal variation in zooplankton composition and grazing impact on phytoplankton standing stock in the Pearl River Estuary. China Cont Shelf Res 24(16):1949–1968

    Article  Google Scholar 

  • Torres Palenzuela JM, González Vilas L, Bellas FM, Garet E, González-Fernández Á, Spyrakos E (2019) Pseudo-nitzschia blooms in a coastal upwelling system: remote sensing detection, toxicity and environmental variables. Water 11(9):1954

    Article  Google Scholar 

  • Tsikoti C, Genitsaris S (2021) Review of harmful algal blooms in the coastal Mediterranean Sea, with a focus on Greek waters. Diversity 13(8):396

    Article  Google Scholar 

  • Utermöhl H (1958) Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Int Ver Theor Angew Limnol Mitt 9(1):1–38

    Google Scholar 

  • Van Dam BR, Wang H (2019) Decadal-scale acidification trends in adjacent North Carolina estuaries: competing role of anthropogenic CO2 and riverine alkalinity loads. Front Mar Sci 6:136

    Article  Google Scholar 

  • Varela M, Prego R (2003) Hydrography and phytoplankton in an isolated and non-pristine ria area: the A Coruña Harbour (NW Spain). Acta Oecologica 24(2):113–124. https://doi.org/10.1016/S1146-609X(03)00048-1

    Article  Google Scholar 

  • Varghese M, George RM, Jasmine S, Laxmilatha P, Sreenath KR, Behera PR, Thomas VJ, Jose Kingsly H (2015) Zooplankton abundance in Amini and Kadmat islands of Lakshadweep. J Mar Biol Ass India 5(1):84–87

    Article  Google Scholar 

  • Vieira L, Azeiteiro U, Ré P, Pastorinho R, Marques JC, Morgado F (2003) Zooplankton distribution in a temperate estuary (Mondego estuary southern arm: western Portugal). Acta Oecologica 24:S163–S173. https://doi.org/10.1016/S1146-609X(03)00038-9

    Article  Google Scholar 

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116(5):882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

  • Vos PC, de Wolf H (1993) Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects. Hydrobiologia 269–270(1):285–296. https://doi.org/10.1007/BF00028027

    Article  Google Scholar 

  • Wallace RB, Baumann H, Grear JS, Aller RC, Gobler CJ (2014) Coastal ocean acidification: the other eutrophication problem. Estuar Coast Shelf Sci 148:1–13

    Article  CAS  Google Scholar 

  • Wells ML, Trainer VL, Smayda TJ, Karlson BS, Trick CG, Kudela RM, Ishikawa A, Bernard S, Wulff A, Anderson DM (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiafe G, Yaqub HB, Mensah MA, Frid CLJ (2008) Impact of climate change on long-term zooplankton biomass in the upwelling region of the Gulf of Guinea. ICES J Mar Sci 65(3):318–324. https://doi.org/10.1093/icesjms/fsn042

    Article  Google Scholar 

  • Williams DM, Reid G (2006) Large and species rich taxa: diatoms, geography and taxonomy. Reconstructing the tree of life: taxonomy and systematics of species-rich taxa, 0 edn. CRC Press

    Google Scholar 

  • Yadav S, Anam GB, Ahn Y-H (2022) Comparative growth characteristics and interspecific competitive interaction of two cyanobacteria Phormidium autumnale and Nostoc sp. Wiley Online Library

    Book  Google Scholar 

  • Yankson K, Obodai E (2007) An update of the number, types and distributin of coastal laggons in Ghana. J Ghana Sci Assoc. https://doi.org/10.4314/jgsa.v2i2.17967

    Article  Google Scholar 

  • Yuan D, Chen L, Luan L, Wang Q, Yang Y (2020) Effect of salinity on the zooplankton community in the Pearl river estuary. J Ocean Univ China 19(6):1389–1398. https://doi.org/10.1007/s11802-020-4449-6

    Article  CAS  Google Scholar 

  • Zakaria HY, Hassan A-KM, El-Naggar HA, Abo-Senna FM (2018) Biomass determination based on the individual volume of the dominant copepod species in the western Egyptian Mediterranean coast. Egypt J Aquat Res 44(2):89–99

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Africa Centre of Excellence in Coastal Resilience (ACECoR), Department of Fisheries and Aquatic Sciences, University of Cape Coast, Ghana and the National Commission for Science, Technology, and Innovation (NACOSTI) for their technical and financial support of this project. The authors would also like to thank Albert Koomson, Docia Agyapong and Emmanuel Klubi for their invaluable contributions to the field sampling and plankton identification.

Funding

This work was funded by the World Bank through ACECoR (credit no. 6389-GH), the Tonolli Memorial Fund of the International Society for Limnology (SIL) and the Danish International Development Agency through the HOTSPOTS 2 project, (39889).

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized by RA, PKM, and EA. Data collection and analysis were undertaken by RA and EAK. The manuscript draft was prepared by RA. The manuscript was critically revised by PKM and EA.

Corresponding author

Correspondence to Rael Adhiambo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Informed consent

I (RA) can confirm that the manuscript has been read and approved by all the named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. I can further confirm that all of the authors have approved the order of authors as listed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhiambo, R., Mensah, P.K., Acheampong, E. et al. Plankton assemblages in a tropical West African estuary. Aquat Sci 86, 70 (2024). https://doi.org/10.1007/s00027-024-01085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-024-01085-8

Keywords

Navigation