Skip to main content

Advertisement

Log in

Taxonomic and functional aspects of diversity and composition of plankton communities in shallow lentic ecosystems along the human impact and environmental gradients

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Plankton communities constitute an important part of the biodiversity in shallow lentic ecosystems (SLEs). Understanding their diversity responses to increasing human pressure is required for the effective management of SLEs. Here we assessed the relationship between different properties of phytoplankton and zooplankton communities (abundance, taxonomic and functional diversity, and taxonomic and functional composition) and human impact (HII index), limnological features of SLEs (i.e., surface area and depth, trophic state, and hydrological connectivity), the biomass of submerged macrophytes, and the abundance of planktivorous fishes. For this, we sampled zooplankton from 28 sampling sites across nine SLEs (seven ponds, one channel, and one shallow lake). For 18 sampling sites across six of the ponds, we also sampled phytoplankton. We found that phytoplankton abundance was negatively associated with the higher HII, while zooplankton abundance and species richness increased with increasing HII. Hydrological connectivity was an important predictor of both phytoplankton and zooplankton diversity and composition. The functional diversity and composition of phytoplankton were more sensitive to environmental changes than their taxonomic diversity. Opposite patterns were recorded for zooplankton diversity metrics, presumably due to the dominance of non-predatory rotifers, which maintained constant functional diversity despite variations in taxonomic diversity along environmental gradients. Our results suggest that the taxonomic and functional diversity metrics of both phytoplankton and zooplankton should be considered simultaneously since they can show contrasting responses to human pressure and environmental changes in SLEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Austria)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The datasets generated and analyzed here are available from the corresponding author upon reasonable request.

Code availability

The code for data analyses associated with the current submission is available from the corresponding author on request.

References

  • Abonyi A, Horváth Z, Ptacnik R (2018) Functional richness outperforms taxonomic richness in predicting ecosystem functioning in natural phytoplankton communities. Freshw Biol 63:178–186. https://doi.org/10.1111/fwb.13051

    Article  CAS  Google Scholar 

  • Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw Biol 47:761–776

    Article  Google Scholar 

  • Arndt H (1993) Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)—a review. Hydrobiologia 255:231–246

    Article  Google Scholar 

  • Badylak S, Phlips E, Dix N, Hart J, Srifa A, Haunert D, He Z, Lockwood J, Stofella P, Sun D, Yang Y (2015) Phytoplankton dynamics in a subtropical tidal creek: influences of rainfall and water residence time on composition and biomass. Mar Freshw Res 67:466–482. https://doi.org/10.1071/MF14325

    Article  Google Scholar 

  • Barnett A, Beisner BE (2007) Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology 88:1675–1686. https://doi.org/10.1890/06-1056.1

    Article  PubMed  Google Scholar 

  • Barnett AJ, Finlay K, Beisner BE (2007) Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshw Biol 52:796–813. https://doi.org/10.1111/J.1365-2427.2007.01733.X

    Article  Google Scholar 

  • Barton K (2020) MuMIn: multi-model Inference. R package. Version 1.43.17. https://cran.r-project.org/package=MuMIn

  • Bartoš E (1959) Virnici-Rotatoria. Fauna ČSR, svezek 15. Nakladestvi Českoslovenke Akademie Ved, Praha, p 969

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Beisner BE, Peres PR, Lindstrom ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87:2985–2991. https://doi.org/10.1890/0012-9658(2006)87[2985:troeas]2.0.co;2

    Article  PubMed  Google Scholar 

  • Beklioğlu M, Meerhoff M, Davidson TA, Ger KA, Havens KA, Moss B (2016) Preface: shallow lakes in a fast changing world. Hydrobiologia 778:9–11. https://doi.org/10.1007/s10750-016-2840-5

    Article  Google Scholar 

  • Berta C, Tóthmérész B, Wojewódka M, Augustyniuk O, Korponai J, Bertalan-Balázs B, Nagy AS, Grigorszky I, Gyulai I (2019) Community response of Cladocera to trophic stress by biomanipulation in a shallow oxbow lake. Water 11:929. https://doi.org/10.3390/w11050929

    Article  Google Scholar 

  • Biggs J, von Fumetti S, Kelly-Quinn M (2017) The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793:3–39. https://doi.org/10.1007/s10750-016-3007-0

    Article  Google Scholar 

  • Blüthgen N, Dormann CF, Prati D et al (2012) A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl Ecol 13:207–220

    Article  Google Scholar 

  • Bolpagni R, Poikane S, Laini A, Bagella S, Bartoli M, Cantonati M (2019) Ecological and conservation value of small standing-water ecosystems: a systematic review of current knowledge and future challenges. Water 11:402. https://doi.org/10.3390/w11030402

    Article  Google Scholar 

  • Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533

    Article  Google Scholar 

  • Braghin LSM, Almeida BA, Amaral DC, Canella TF, Gimenez BCG, Bonecker CC (2018) Effects of dams decrease zooplankton functional β-diversity in river-associated lakes. Freshw Biol 63:721–730. https://doi.org/10.1111/fwb.13117

    Article  Google Scholar 

  • Brysiewicz A, Sługocki Ł, Wesołowski P, Czerniawski R (2017) Zooplankton community structure in small ponds in relation to fish community and environmental factors. Appl Ecol Environ Res 15:929–941

    Article  Google Scholar 

  • Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369

    Article  CAS  Google Scholar 

  • Carlson RE, Simpson J (1996) A Coordinator’s guide to volunteer lake monitoring methods. North American Lake Management Society, Madison

    Google Scholar 

  • Celewicz-Gołdyn S, Kuczyńska-Kippen N (2017) Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest waterbodies. PLoSONE 12:e0177317. https://doi.org/10.1371/journal.pone.0177317

    Article  CAS  Google Scholar 

  • Céréghino R, Pillar VD, Srivastava DS et al (2018) Constraints on the functional trait space of aquatic invertebrates in bromeliads. Funct Ecol 32:2435–2447. https://doi.org/10.1111/1365-2435.13141

    Article  Google Scholar 

  • Chaparro G, O’Farrell I, Hein T (2019) Multi-scale analysis of functional plankton diversity in floodplain wetlands: effects of river regulation. Sci Total Environ 667:338–347. https://doi.org/10.1016/j.scitotenv.2019.02.147

    Article  CAS  PubMed  Google Scholar 

  • Choi JS (1998) Lake ecosystem responses to rapid climate change. Environ Monit Assess 49:281–290

    Article  Google Scholar 

  • Choi J-Y, Jeong K-S, La G-H, Chang K-H, Joo G-J (2015) The influence of aquatic macrophytes on the distribution and feeding habits of two Asplanchna species (A. priodonta and A. herrickii) in shallow wetlands in South Korea. J Limnol 74:1–11. https://doi.org/10.4081/jlimnol.2015.896

    Google Scholar 

  • Dembowska EA, Mieszczankin T, Napiórkowski P (2018) Changes of the phytoplankton community as symptoms of deterioration of water quality in a shallow lake. Environ Monit Assess 190:95. https://doi.org/10.1007/s10661-018-6465-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dévai I (1977) Az Evezölábú rákok (Calanoida es Cyclopoida). Vízügyi hidrobiológia 5. Vízügyi Dokumentációs és Továbbképzö Intézet, Budapest, p 220

    Google Scholar 

  • Dussart B (1969) Les copepodes des eaux continentales d′Europe occidentale, Tom II: Cyclopoides et Biologie. N. Boubée et Cie, Pari, p 292

    Google Scholar 

  • Echeveste P, Dachs J, Berrojalbiz N, Agustí S (2010) Decrease in the abundance and viability of oceanic phytoplankton due to trace levels of complex mixtures of organic pollutants. Chemosphere 81:161–168

    Article  CAS  PubMed  Google Scholar 

  • EN 16698:2015–12: European Standard Water quality. Guidance on quantitative and qualitative sampling of phytoplankton from inland waters

  • Feng B, Zhang M, Chen J, Xu J, Xiao B, Zhou M, Zhang M (2021) Reduction in the phytoplankton index of biotic integrity in riverine ecosystems driven by industrial activities, dam construction and mining: a case study in the Ganjiang River. China Ecol Indic 120:106907. https://doi.org/10.1016/j.ecolind.2020.106907

    Article  CAS  Google Scholar 

  • Flössner D (1972) Krebstiere, Crustacea: Kiemen und Blattfüsser, Branchiopoda; Fischläuse, Branchiura, Tierwelt Deutschl, 60. Gustav Fischer, Jena, p 501

    Google Scholar 

  • García-Chicote J, Armengol X, Rojo C (2018) Zooplankton abundance: a neglected key element in the evaluation of reservoir water quality. Limnologica 69:46–54. https://doi.org/10.1016/j.limno.2017.11.004

    Article  CAS  Google Scholar 

  • Ghadouani A, Pinel-Alloul B, Prepas EE (2003) Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities. Freshw Biol 48:363–381

    Article  Google Scholar 

  • Goździejewska A, Glińska-Lewczuk K, Obolewski K, Grzybowski M, Kujawa R, Lew S, Grabowska M (2016) Effects of lateral connectivity on zooplankton community structure in floodplain lakes. Hydrobiologia 774:7–21. https://doi.org/10.1007/s10750-016-2724-8

    Article  CAS  Google Scholar 

  • Grabowska M, Glińska-Lewczuk K, Obolewski K, Burandt P, Kobus S, Dunalska J, Kujawa R, Goździejewska A, Skrzypczak A (2014) Effects of hydrological and physicochemical factors on phytoplankton communities in floodplain lakes. Pol J Environ Stud 23:713–725

    CAS  Google Scholar 

  • Graco-Roza C, Soininen J, Corrêa G, Pacheco FS, Miranda M, Domingos P, Marinho MM (2021) Functional rather than taxonomic diversity reveals changes in the phytoplankton community of a large dammed river. Ecol Indic 121:107048

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2020) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org Accessed 19 Nov 2020

  • Habelman J, Haldna M (2014) Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. J Limnol 73:263–273. https://doi.org/10.4081/jlimnol.2014.828

    Google Scholar 

  • Han Z, Cui B (2016) Development of an integrated stress index to determine multiple anthropogenic stresses on macrophyte biomass and richness in ponds. Ecol Eng 90:151–162. https://doi.org/10.1016/j.ecoleng.2016.01.051

    Article  Google Scholar 

  • Hébert M-P, Beisner BE, Maranger R (2016) A compilation of quantitative functional traits for marine and freshwater crustacean zooplankton. Ecology 97:1081–1081. https://doi.org/10.1890/15-1275.1

    Article  PubMed  Google Scholar 

  • Herzog F, Steiner B, Bailey D, Baudry J, Billeter R, Bukácek R, De Blust G, De Cock R, Dirksen J, Dormann CF, De Filippi R, Frossard E, Liira J, Schmidt T, Stöckli R, Thenail C, Van Wingerden W, Bugter R (2006) Assessing the intensity of temperate European agriculture at the landscape scale. Eur J Agron 24:165–181

    Article  Google Scholar 

  • Hindák F (2001) Fotografický atlas mikroskopických siníc. Veda, Bratislava, pp 1–128

    Google Scholar 

  • Hofrat W, Ottendorfer J (1983) Wasser und Abwasser, index fur die Limnosaprobiat, vol 26. Hearausgegeben von der Bundesanstald fur Wasserergute, Wien, Kaisermuhlen, p 175

    Google Scholar 

  • John DM, Whitton BA, Brook AJ (2002) The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae. Cambridge, New York, p 870

    Google Scholar 

  • Joniak T, Kuczyńska-Kippen N, Gąbka M (2017) Effect of agricultural landscape characteristics on the hydrobiota structure in small water bodies. Hydrobiologia 793:121–133. https://doi.org/10.1007/s10750-016-2913-5

    Article  CAS  Google Scholar 

  • Josué IIP, Cardoso SJ, Miranda M, Mucci M, Ger KA, Roland F, Marinho MM (2019) Cyanobacteria dominance drives zooplankton functional dispersion. Hydrobiologia 831:149–161. https://doi.org/10.1007/s10750-018-3710-0

    Article  CAS  Google Scholar 

  • Kiørboe T (2008) A mechanistic approach to plankton ecology. Princeton, Princeton, NJ

    Google Scholar 

  • Komárek J (2013) Cyanoprokaryota 3. Teil: Heterocytous Genera. In: Budel B, Gärtner G, Krienitz L, Schagerl M (eds) Süßwasserflora von Mitteleuropa. Springer Spektrum, Heidelberg, Berlin, p 1130

    Chapter  Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil: Chroococcaless. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Spektrum Akademischer, Heidelberg, Berlin, p 548

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil: Oscillatoriales. In: Budel B, Krienitz L, Gärtner G, Schagerl M (eds) Süßwasserflora von Mitteleuropa. Spektrum Akademischer, Heidelberg, München, p 759

    Google Scholar 

  • Koste W (1978) Rotatoria Die Radiertiere Mitteleuropas Uberordung Monogonta, 2nd edn. Gebrüder Borntraeger, Berlin, Stutgart, p 645

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1986) Bacillariophyceae 1, Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süβwasserflora von Mitteleuropa 2/1. Gustav Fischer, Jena, p 876

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/2. Gustav Fischer, Stuttgart, Jena, p 596

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/3. Gustav Fischer, Stuttgart, Jena, p 576

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In: Ettl H, Gartner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/4. Gustav Fischer, Stuttgart and New York, p 437

    Google Scholar 

  • Krivtsov V, Birkinshaw S, Arthur S, Knott D, Monfries R, Wilson K, Christie D, Chamberlain D, Brownless P, Kelly D, Buckmann J, Forbes H, Monteiro Y (2020) Flood resilience, amenity and biodiversity benefits of an historic urban pond. Phil Trans R Soc A 378:20190389. https://doi.org/10.1098/rsta.2019.0389

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuczyńska-Kippen N (2020) Response of zooplankton indices to anthropogenic pressure in the catchment of field ponds. Water 12:758. https://doi.org/10.3390/w12030758

    Article  CAS  Google Scholar 

  • Kuczyńska-Kippen N, Joniak T (2016) Zooplankton diversity and macrophyte biometry in shallow water bodies of various trophic state. Hydrobiologia 774:39–51. https://doi.org/10.1007/s10750-015-2595-4

    Article  CAS  Google Scholar 

  • Kufel L, Leśniczuk S (2014) Hydrological connectivity as most probable key driver of chlorophyll and nutrients in oxbow lakes of the Bug river (Poland). Limnologica 46:94–98

    Article  CAS  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package. Version 1.0–12. https://cran.r-project.org/package=FD

  • Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639

    Article  Google Scholar 

  • Litchman E, Ohman MD, Kiørboe T (2013) Trait-based approaches to zooplankton communities. J Plankton Res 35:473–484. https://doi.org/10.1093/plankt/fbt019

    Article  Google Scholar 

  • Loria K (2017) Freshwater zooplankton communities as indicators of habitat quality: testing responses to multiple disturbances. Undergraduate Honors Theses. University of Colorado, Boulder, p 1388

    Google Scholar 

  • MacArthur R, Wilson EO (1967) The theory of island biogeography. Princeton, Princeton

    Google Scholar 

  • Manatunge J, Asaeda T, Priyadarshana T (2000) The influence of structural complexity on fish–zooplankton interactions: a study using artificial submerged macrophytes. Environ Biol Fishes 58:425–438

    Article  Google Scholar 

  • Mano H, Tanaka Y (2016) Mechanisms of compensatory dynamics in zooplankton and maintenance of food chain efficiency under toxicant stress. Ecotoxicology 25:399–411

    Article  CAS  PubMed  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185. https://doi.org/10.1016/j.tree.2006.02.002

    Article  PubMed  Google Scholar 

  • Mihaljević M, Stević F, Horvatić J, Hackenberger Kutuzović B (2009) Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia 618:77–88. https://doi.org/10.1007/s10750-008-9550-6

    Article  Google Scholar 

  • Nõges T (2009) Relationships between morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia 633:33–43. https://doi.org/10.1007/s10750-009-9874-x

    Article  CAS  Google Scholar 

  • Oertli B, Auderset Joye D, Castella E, Juge R, Lachavanne J-B (2000) Diversité biologique et typologie écologique des étangs et petits lacs de Suisse. Swiss Agency for the Environment, Forests and Landscape, Laboratory of Ecology and Aquatic Biology, University of Geneva, Geneva

  • Oksanen AJ, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: Community Ecology Package. http://mirror.bjtu.edu.cn/cran/web/packages/vegan/vegan.pdf

  • Pálffy K, Présing M, Vörös L (2013) Diversity patterns of trait-based phytoplankton functional groups in two basins of a large, shallow lake (Lake Balaton, Hungary) with different trophic state. Aquat Ecol 47:195–210. https://doi.org/10.1007/s10452-013-9434-3

    Article  Google Scholar 

  • Pecorari S, José de Paggi S, Paggi JC (2006) Assesment of the urbanization effect on a lake by zooplankton. Water Resour 33:677–685. https://doi.org/10.1134/S0097807806060091

    Article  CAS  Google Scholar 

  • Petkovski TK (1983) Fauna of Macedonia V: Kalanoids - Calanoida (Crustacea - Copepoda). Macedonian Museum of Natural History, Skopje, p 182 (in Macedonian)

    Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2020) nlme: linear and nonlinear mixed effects models. R package. Version 3.1–150. https://cran.r-project.org/package=nlme

  • Porter KG, Orcutt JD (1980) Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. In: Kerfoot WC (ed) Evolution and ecology of zooplankton communities. University Press of New England, Hanover, pp 268–281

    Google Scholar 

  • Ptacnik R, Lepistö L, Willén E, Brettum P, Andersen T, Rekolainen S, Lyche Solheim A, Carvalho L (2008) Quantitative responses of lake phytoplankton to eutrophication in northern Europe. Aquat Ecol 42:227–236. https://doi.org/10.1007/s10452-008-9181-z

    Article  CAS  Google Scholar 

  • QGIS Development Team (2021) QGIS geographic information system. Open source geospatial foundation project. http://qgis.osgeo.org

  • Quintana XD, Boix D, Badosa A, Brucet S, Compte J, Gascón S, López-Flores R, Sala J, Moreno-Amich R (2006) Community structure in mediterranean shallow lentic ecosystems: size-based vs. taxon-based approaches. Limnetica 25:303–320

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.r-project.org

  • Reynolds CS (2006) The Ecology of Phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rimet F, Druart J-C (2018) A trait database for phytoplankton of temperate lakes. Ann Limnol - Int J Lim 54:18. https://doi.org/10.1051/limn/2018009

    Article  Google Scholar 

  • Rosset V, Angélibert S, Arthaud F, Bornette G, Robin J, Wezel A, Vallod D, Oertli B (2014) Is eutrophication really a major impairment for small waterbody biodiversity? J Appl Ecol 51:415–425. https://doi.org/10.1111/1365-2664.12201

    Article  Google Scholar 

  • Rylov VM (1948) Crustaceans, Freshwater Cyclopoida, Fauna of the USSR, vol III. Nauka, Moscow-Leningrad, p 318 (in Russian)

    Google Scholar 

  • Salmaso N, Padisák J (2007) Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578:97–112. https://doi.org/10.1007/s10750-006-0437-0

    Article  Google Scholar 

  • Salmaso N, Naselli-Flores L, Padisák J (2015) Functional classifications and their application in phytoplankton ecology. Freshw Biol 60:603–619. https://doi.org/10.1111/fwb.12520

    Article  Google Scholar 

  • Sánchez ML, Schiaffino MR, Graziano M, Huber P, Lagomarsino L, Minotti P, Zagarese H, Izaguirre I (2021) Effect of land use on the phytoplankton community of Pampean shallow lakes of the Salado river basin (Buenos Aires Province, Argentina). Aquat Ecol 55:417–435. https://doi.org/10.1007/s10452-021-09835-8

    Article  CAS  Google Scholar 

  • Santos JBO, Silva LHS, Branco CWC, Huszar VLM (2016) The roles of environmental conditions and geographical distances on the species turnover of the whole phytoplankton and zooplankton communities and their subsets in tropical reservoirs. Hydrobiologia 764:171–186. https://doi.org/10.1007/s10750-015-2296-z

    Article  Google Scholar 

  • Schagerl M, Angeler DG, Biester A (2011) Phytoplankton community structure along saline and trophic state gradients in urban clay-pit ponds (Austria). Fundam Appl Limnol 178(4):301–314. https://doi.org/10.1127/1863-9135/2011/0178-0301

    Article  CAS  Google Scholar 

  • Schmera D, Heino J, Podani J, Erős T, Dolédec S (2017) Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 787:27–44. https://doi.org/10.1007/s10750-016-2974-5

    Article  Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communication. Illinois, Urbana

    Google Scholar 

  • Shurin JB, Havel JE, Leibold MA, Pinel-Alloul B (2000) Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology 81:3062–3073. https://doi.org/10.1890/0012-9658(2000)081[3062:LARZSR]2.0.CO;2

    Article  Google Scholar 

  • Simões NR, Lansac-Tôha FA, Velho LFM, Bonecker CC (2012) Intra and inter-annual structure of zooplankton communities in floodplain lakes: a long-term ecological research study. Rev Biol Trop 60:1819–1836

    Article  PubMed  Google Scholar 

  • Simões NR, Nunes AH, Dias JD, Lansac-Tôha FA, Velho LFM, Bonecker CC (2015) Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758:3–17. https://doi.org/10.1007/s10750-015-2260-y

    Article  CAS  Google Scholar 

  • Sodré EdO, Bozelli RL (2019) How planktonic microcrustaceans respond to environment and affect ecosystem: a functional trait perspective. Int Aquat Res 11:207–223. https://doi.org/10.1007/s40071-019-0233-x

    Article  Google Scholar 

  • Soliveres S, van der Plas F, Manning P et al (2016) Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536:456–459. https://doi.org/10.1038/nature19092

    Article  CAS  PubMed  Google Scholar 

  • Špoljar M, Dražina T, Habdija I, Meseljević M, Grčić Z (2011a) Contrasting zooplankton assemblages in two oxbow lakes with low transparencies and narrow emergent macrophyte belts (Krapina River, Croatia). Internat Rev Hydrobiol 96:175–190. https://doi.org/10.1002/iroh.201011257

    Article  Google Scholar 

  • Špoljar M, Tomljanović T, Lalić I (2011b) Eutrophication impact on zooplankton community: a shallow lake approach. Holist Approach Environ 1:131–142

    Google Scholar 

  • Šramek-Hušek R, Straškraba M, Brtek J (1962) Lupenorošci - Branchiopoda Fauna ČSR, vol 15. Vydalo Nakladetestvi Československe akademie ved, Praha, p 470

    Google Scholar 

  • Staehr PA, Baastrup-Spohr L, Sand-Jensen K, Stedmon C (2012) Lake metabolism scales with lake morphometry and catchment conditions. Aquat Sci 74:155–169. https://doi.org/10.1007/s00027-011-0207-6

    Article  CAS  Google Scholar 

  • Stamenković O, Stojković Piperac M, Milošević D, Buzhdygan OY, Petrović A, Jenačković D, Ðurđević A, Čerba D, Vlaičević B, Nikolić D, Simić V (2019) Anthropogenic pressure explains variations in the biodiversity of pond communities along environmental gradients: a case study in south-eastern Serbia. Hydrobiologia 838:65–83. https://doi.org/10.1007/s10750-019-03978-4

    Article  CAS  Google Scholar 

  • Stamenković O, Simić V, Stojković Piperac M, Milošević D, Simić S, Ostojić A, Đorđević N, Čerba D, Petrović A, Jenačković Gocić D, Đurđević A, Koh M, Buzhdygan OY (2021) Direct, water-chemistry mediated, and cascading effects of human-impact intensification on multitrophic biodiversity in ponds. Aquat Ecol 55:187–214. https://doi.org/10.1007/s10452-020-09822-5

    Article  CAS  Google Scholar 

  • Stanković I, Vlahović T, Gligora Udovič M, Várbíró G, Borics G (2012) Phytoplankton functional and morpho-functional approach in large floodplain rivers. In: Salmaso N, Naselli-Flores L, Cerasino L, Flaim G, Tolotti M, Padisák J (eds) Phytoplankton responses to human impacts at different scales. Developments in hydrobiology 221. Springer, Dordrecht, pp 217–231. https://doi.org/10.1007/978-94-007-5790-5_17

    Chapter  Google Scholar 

  • Stević F, Mihaljević M, Špoljarić D (2013) Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia 709:143–158. https://doi.org/10.1007/s10750-013-1444-6

    Article  CAS  Google Scholar 

  • Stomp M, Huisman J, Mittelbach GG, Litchman E, Klausmeier CA (2011) Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92:2096–2107. https://doi.org/10.1890/10-1023.1

    Article  PubMed  Google Scholar 

  • Strickland JDH, Parsons TR (1968) A practical handbook of sea-water analysis. Bull Fish Res Bord Can 167:1–310

    Google Scholar 

  • Toporowska M, Ferencz B, Dawidek J (2018) Impact of lake-catchment processes on phytoplankton community structure in temperate shallow lakes. Ecohydrology 11:e2017. https://doi.org/10.1002/eco.2017

    Article  Google Scholar 

  • Török P, T-Krasznai E, B-Béres V, Bácsi I, Borics G, Tóthmérész B, Sayer E (2016) Functional diversity supports the biomass–diversity humped-back relationship in phytoplankton assemblages. Funct Ecol 30:1593–1602. https://doi.org/10.1111/1365-2435.12631

    Article  Google Scholar 

  • Trigal C, García-Criado F, Fernandez-Alaez C (2007) Macroinvertebrate communities of Mediterranean ponds (North Iberian Plateau): importance of natural and human-induced variability. Freshw Biol 52:2042–2055

    Article  Google Scholar 

  • Trigal C, Fernandez-Alaez C, Fernandez-Alaez M (2014) Congruence between functional and taxonomic patterns of benthic and planktonic assemblages in flatland ponds. Aquat Sci 76:61–72. https://doi.org/10.1007/s00027-013-0312-9

    Article  CAS  Google Scholar 

  • Underwood GJC, Kromkamp J (1999) Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res 29:93–153

    Article  CAS  Google Scholar 

  • UNESCO (1966) Determinations of photosynthetic pigments in seawater, report of SCOR-UNESCO working group 17. Monogr Oceanogr Meth, Paris, p 69

    Google Scholar 

  • Utermöhl H (1958) Zur vervolkmmung der quantitativen phytoplankton methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Van Egeren SJ, Dodson SI, Torke B, Maxted JT (2011) The relative significance of environmental and anthropogenic factors affecting zooplankton community structure in southeast Wisconsin Till plain lakes. Hydrobiologia 668:137–146. https://doi.org/10.1007/s10750-011-0636-1

    Article  CAS  Google Scholar 

  • Villéger S, Miranda JR, Hernandez DF, Mouillot D (2012) Low functional β-diversity despite high taxonomic β-diversity among tropical estuarine fish communities. PLoS ONE 7:e40679. https://doi.org/10.1371/journal.pone.0040679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehr JD, Sheath RG (2003) Freshwater algae of North America: ecology and classification. Academic, USA, p 826

    Google Scholar 

  • Williams PJ, Thomas DN, Reynolds CS (2002) Phytoplankton productivity: carbon assimilation in marine and freshwater ecosystems. Wiley, Oxford, UK

    Book  Google Scholar 

  • Živković A (1987) Fauna Rotatoria jugoslovenskog dela Dunava i voda njegovog plavnog područja kod Apatina. Otisak iz Zbornika radova o fauni SR Srbije, IV, SANU, Odeljenje prirodno-matematičkih nauka, Beograd, pp 7–115

Download references

Acknowledgements

This study was supported by the Serbian Ministry of Education, Science and Technological Development (Agreement numbers 451-03-68/2022-14/200124 and 451-03-68/2022-14/ 200122) and a bilateral cooperation scientific project “Trophic connections of freshwater ichthyofauna: fish diet in sustainable aquaculture” between Serbia and Croatia funded by the Serbian Ministry of Education, Science and Technological Development and Croatian Ministry of Science and Education. We thank Sonja Dix (UK) for the final English corrections.

Funding

The funding was provided by the Serbian Ministry of Education, Science and Technological Development and Croatian Ministry of Science and Education.

Author information

Authors and Affiliations

Authors

Contributions

OS, MSP, DČ, DM, and OYB designed the study and developed the analytical procedure. AO, NBĐ and SBS contributed data. DC provided the maps of the study areas. OS, with inputs from OYB, performed statistical analysis. OS wrote the original draft. All authors contributed substantially to writing and editing the manuscript.

Corresponding author

Correspondence to Olivera Stamenković.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamenković, O., Stojković Piperac, M., Čerba, D. et al. Taxonomic and functional aspects of diversity and composition of plankton communities in shallow lentic ecosystems along the human impact and environmental gradients. Aquat Sci 84, 57 (2022). https://doi.org/10.1007/s00027-022-00893-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-022-00893-0

Keywords