Abstract
Plankton communities constitute an important part of the biodiversity in shallow lentic ecosystems (SLEs). Understanding their diversity responses to increasing human pressure is required for the effective management of SLEs. Here we assessed the relationship between different properties of phytoplankton and zooplankton communities (abundance, taxonomic and functional diversity, and taxonomic and functional composition) and human impact (HII index), limnological features of SLEs (i.e., surface area and depth, trophic state, and hydrological connectivity), the biomass of submerged macrophytes, and the abundance of planktivorous fishes. For this, we sampled zooplankton from 28 sampling sites across nine SLEs (seven ponds, one channel, and one shallow lake). For 18 sampling sites across six of the ponds, we also sampled phytoplankton. We found that phytoplankton abundance was negatively associated with the higher HII, while zooplankton abundance and species richness increased with increasing HII. Hydrological connectivity was an important predictor of both phytoplankton and zooplankton diversity and composition. The functional diversity and composition of phytoplankton were more sensitive to environmental changes than their taxonomic diversity. Opposite patterns were recorded for zooplankton diversity metrics, presumably due to the dominance of non-predatory rotifers, which maintained constant functional diversity despite variations in taxonomic diversity along environmental gradients. Our results suggest that the taxonomic and functional diversity metrics of both phytoplankton and zooplankton should be considered simultaneously since they can show contrasting responses to human pressure and environmental changes in SLEs.







Similar content being viewed by others
Availability of data and material
The datasets generated and analyzed here are available from the corresponding author upon reasonable request.
Code availability
The code for data analyses associated with the current submission is available from the corresponding author on request.
References
Abonyi A, Horváth Z, Ptacnik R (2018) Functional richness outperforms taxonomic richness in predicting ecosystem functioning in natural phytoplankton communities. Freshw Biol 63:178–186. https://doi.org/10.1111/fwb.13051
Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw Biol 47:761–776
Arndt H (1993) Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)—a review. Hydrobiologia 255:231–246
Badylak S, Phlips E, Dix N, Hart J, Srifa A, Haunert D, He Z, Lockwood J, Stofella P, Sun D, Yang Y (2015) Phytoplankton dynamics in a subtropical tidal creek: influences of rainfall and water residence time on composition and biomass. Mar Freshw Res 67:466–482. https://doi.org/10.1071/MF14325
Barnett A, Beisner BE (2007) Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology 88:1675–1686. https://doi.org/10.1890/06-1056.1
Barnett AJ, Finlay K, Beisner BE (2007) Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshw Biol 52:796–813. https://doi.org/10.1111/J.1365-2427.2007.01733.X
Barton K (2020) MuMIn: multi-model Inference. R package. Version 1.43.17. https://cran.r-project.org/package=MuMIn
Bartoš E (1959) Virnici-Rotatoria. Fauna ČSR, svezek 15. Nakladestvi Českoslovenke Akademie Ved, Praha, p 969
Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48
Beisner BE, Peres PR, Lindstrom ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87:2985–2991. https://doi.org/10.1890/0012-9658(2006)87[2985:troeas]2.0.co;2
Beklioğlu M, Meerhoff M, Davidson TA, Ger KA, Havens KA, Moss B (2016) Preface: shallow lakes in a fast changing world. Hydrobiologia 778:9–11. https://doi.org/10.1007/s10750-016-2840-5
Berta C, Tóthmérész B, Wojewódka M, Augustyniuk O, Korponai J, Bertalan-Balázs B, Nagy AS, Grigorszky I, Gyulai I (2019) Community response of Cladocera to trophic stress by biomanipulation in a shallow oxbow lake. Water 11:929. https://doi.org/10.3390/w11050929
Biggs J, von Fumetti S, Kelly-Quinn M (2017) The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793:3–39. https://doi.org/10.1007/s10750-016-3007-0
Blüthgen N, Dormann CF, Prati D et al (2012) A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl Ecol 13:207–220
Bolpagni R, Poikane S, Laini A, Bagella S, Bartoli M, Cantonati M (2019) Ecological and conservation value of small standing-water ecosystems: a systematic review of current knowledge and future challenges. Water 11:402. https://doi.org/10.3390/w11030402
Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533
Braghin LSM, Almeida BA, Amaral DC, Canella TF, Gimenez BCG, Bonecker CC (2018) Effects of dams decrease zooplankton functional β-diversity in river-associated lakes. Freshw Biol 63:721–730. https://doi.org/10.1111/fwb.13117
Brysiewicz A, Sługocki Ł, Wesołowski P, Czerniawski R (2017) Zooplankton community structure in small ponds in relation to fish community and environmental factors. Appl Ecol Environ Res 15:929–941
Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369
Carlson RE, Simpson J (1996) A Coordinator’s guide to volunteer lake monitoring methods. North American Lake Management Society, Madison
Celewicz-Gołdyn S, Kuczyńska-Kippen N (2017) Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest waterbodies. PLoSONE 12:e0177317. https://doi.org/10.1371/journal.pone.0177317
Céréghino R, Pillar VD, Srivastava DS et al (2018) Constraints on the functional trait space of aquatic invertebrates in bromeliads. Funct Ecol 32:2435–2447. https://doi.org/10.1111/1365-2435.13141
Chaparro G, O’Farrell I, Hein T (2019) Multi-scale analysis of functional plankton diversity in floodplain wetlands: effects of river regulation. Sci Total Environ 667:338–347. https://doi.org/10.1016/j.scitotenv.2019.02.147
Choi JS (1998) Lake ecosystem responses to rapid climate change. Environ Monit Assess 49:281–290
Choi J-Y, Jeong K-S, La G-H, Chang K-H, Joo G-J (2015) The influence of aquatic macrophytes on the distribution and feeding habits of two Asplanchna species (A. priodonta and A. herrickii) in shallow wetlands in South Korea. J Limnol 74:1–11. https://doi.org/10.4081/jlimnol.2015.896
Dembowska EA, Mieszczankin T, Napiórkowski P (2018) Changes of the phytoplankton community as symptoms of deterioration of water quality in a shallow lake. Environ Monit Assess 190:95. https://doi.org/10.1007/s10661-018-6465-1
Dévai I (1977) Az Evezölábú rákok (Calanoida es Cyclopoida). Vízügyi hidrobiológia 5. Vízügyi Dokumentációs és Továbbképzö Intézet, Budapest, p 220
Dussart B (1969) Les copepodes des eaux continentales d′Europe occidentale, Tom II: Cyclopoides et Biologie. N. Boubée et Cie, Pari, p 292
Echeveste P, Dachs J, Berrojalbiz N, Agustí S (2010) Decrease in the abundance and viability of oceanic phytoplankton due to trace levels of complex mixtures of organic pollutants. Chemosphere 81:161–168
EN 16698:2015–12: European Standard Water quality. Guidance on quantitative and qualitative sampling of phytoplankton from inland waters
Feng B, Zhang M, Chen J, Xu J, Xiao B, Zhou M, Zhang M (2021) Reduction in the phytoplankton index of biotic integrity in riverine ecosystems driven by industrial activities, dam construction and mining: a case study in the Ganjiang River. China Ecol Indic 120:106907. https://doi.org/10.1016/j.ecolind.2020.106907
Flössner D (1972) Krebstiere, Crustacea: Kiemen und Blattfüsser, Branchiopoda; Fischläuse, Branchiura, Tierwelt Deutschl, 60. Gustav Fischer, Jena, p 501
García-Chicote J, Armengol X, Rojo C (2018) Zooplankton abundance: a neglected key element in the evaluation of reservoir water quality. Limnologica 69:46–54. https://doi.org/10.1016/j.limno.2017.11.004
Ghadouani A, Pinel-Alloul B, Prepas EE (2003) Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities. Freshw Biol 48:363–381
Goździejewska A, Glińska-Lewczuk K, Obolewski K, Grzybowski M, Kujawa R, Lew S, Grabowska M (2016) Effects of lateral connectivity on zooplankton community structure in floodplain lakes. Hydrobiologia 774:7–21. https://doi.org/10.1007/s10750-016-2724-8
Grabowska M, Glińska-Lewczuk K, Obolewski K, Burandt P, Kobus S, Dunalska J, Kujawa R, Goździejewska A, Skrzypczak A (2014) Effects of hydrological and physicochemical factors on phytoplankton communities in floodplain lakes. Pol J Environ Stud 23:713–725
Graco-Roza C, Soininen J, Corrêa G, Pacheco FS, Miranda M, Domingos P, Marinho MM (2021) Functional rather than taxonomic diversity reveals changes in the phytoplankton community of a large dammed river. Ecol Indic 121:107048
Guiry MD, Guiry GM (2020) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org Accessed 19 Nov 2020
Habelman J, Haldna M (2014) Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. J Limnol 73:263–273. https://doi.org/10.4081/jlimnol.2014.828
Han Z, Cui B (2016) Development of an integrated stress index to determine multiple anthropogenic stresses on macrophyte biomass and richness in ponds. Ecol Eng 90:151–162. https://doi.org/10.1016/j.ecoleng.2016.01.051
Hébert M-P, Beisner BE, Maranger R (2016) A compilation of quantitative functional traits for marine and freshwater crustacean zooplankton. Ecology 97:1081–1081. https://doi.org/10.1890/15-1275.1
Herzog F, Steiner B, Bailey D, Baudry J, Billeter R, Bukácek R, De Blust G, De Cock R, Dirksen J, Dormann CF, De Filippi R, Frossard E, Liira J, Schmidt T, Stöckli R, Thenail C, Van Wingerden W, Bugter R (2006) Assessing the intensity of temperate European agriculture at the landscape scale. Eur J Agron 24:165–181
Hindák F (2001) Fotografický atlas mikroskopických siníc. Veda, Bratislava, pp 1–128
Hofrat W, Ottendorfer J (1983) Wasser und Abwasser, index fur die Limnosaprobiat, vol 26. Hearausgegeben von der Bundesanstald fur Wasserergute, Wien, Kaisermuhlen, p 175
John DM, Whitton BA, Brook AJ (2002) The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae. Cambridge, New York, p 870
Joniak T, Kuczyńska-Kippen N, Gąbka M (2017) Effect of agricultural landscape characteristics on the hydrobiota structure in small water bodies. Hydrobiologia 793:121–133. https://doi.org/10.1007/s10750-016-2913-5
Josué IIP, Cardoso SJ, Miranda M, Mucci M, Ger KA, Roland F, Marinho MM (2019) Cyanobacteria dominance drives zooplankton functional dispersion. Hydrobiologia 831:149–161. https://doi.org/10.1007/s10750-018-3710-0
Kiørboe T (2008) A mechanistic approach to plankton ecology. Princeton, Princeton, NJ
Komárek J (2013) Cyanoprokaryota 3. Teil: Heterocytous Genera. In: Budel B, Gärtner G, Krienitz L, Schagerl M (eds) Süßwasserflora von Mitteleuropa. Springer Spektrum, Heidelberg, Berlin, p 1130
Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil: Chroococcaless. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Spektrum Akademischer, Heidelberg, Berlin, p 548
Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil: Oscillatoriales. In: Budel B, Krienitz L, Gärtner G, Schagerl M (eds) Süßwasserflora von Mitteleuropa. Spektrum Akademischer, Heidelberg, München, p 759
Koste W (1978) Rotatoria Die Radiertiere Mitteleuropas Uberordung Monogonta, 2nd edn. Gebrüder Borntraeger, Berlin, Stutgart, p 645
Krammer K, Lange-Bertalot H (1986) Bacillariophyceae 1, Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süβwasserflora von Mitteleuropa 2/1. Gustav Fischer, Jena, p 876
Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/2. Gustav Fischer, Stuttgart, Jena, p 596
Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/3. Gustav Fischer, Stuttgart, Jena, p 576
Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In: Ettl H, Gartner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/4. Gustav Fischer, Stuttgart and New York, p 437
Krivtsov V, Birkinshaw S, Arthur S, Knott D, Monfries R, Wilson K, Christie D, Chamberlain D, Brownless P, Kelly D, Buckmann J, Forbes H, Monteiro Y (2020) Flood resilience, amenity and biodiversity benefits of an historic urban pond. Phil Trans R Soc A 378:20190389. https://doi.org/10.1098/rsta.2019.0389
Kuczyńska-Kippen N (2020) Response of zooplankton indices to anthropogenic pressure in the catchment of field ponds. Water 12:758. https://doi.org/10.3390/w12030758
Kuczyńska-Kippen N, Joniak T (2016) Zooplankton diversity and macrophyte biometry in shallow water bodies of various trophic state. Hydrobiologia 774:39–51. https://doi.org/10.1007/s10750-015-2595-4
Kufel L, Leśniczuk S (2014) Hydrological connectivity as most probable key driver of chlorophyll and nutrients in oxbow lakes of the Bug river (Poland). Limnologica 46:94–98
Laliberté E, Legendre P, Shipley B (2014) Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package. Version 1.0–12. https://cran.r-project.org/package=FD
Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639
Litchman E, Ohman MD, Kiørboe T (2013) Trait-based approaches to zooplankton communities. J Plankton Res 35:473–484. https://doi.org/10.1093/plankt/fbt019
Loria K (2017) Freshwater zooplankton communities as indicators of habitat quality: testing responses to multiple disturbances. Undergraduate Honors Theses. University of Colorado, Boulder, p 1388
MacArthur R, Wilson EO (1967) The theory of island biogeography. Princeton, Princeton
Manatunge J, Asaeda T, Priyadarshana T (2000) The influence of structural complexity on fish–zooplankton interactions: a study using artificial submerged macrophytes. Environ Biol Fishes 58:425–438
Mano H, Tanaka Y (2016) Mechanisms of compensatory dynamics in zooplankton and maintenance of food chain efficiency under toxicant stress. Ecotoxicology 25:399–411
McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185. https://doi.org/10.1016/j.tree.2006.02.002
Mihaljević M, Stević F, Horvatić J, Hackenberger Kutuzović B (2009) Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia 618:77–88. https://doi.org/10.1007/s10750-008-9550-6
Nõges T (2009) Relationships between morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia 633:33–43. https://doi.org/10.1007/s10750-009-9874-x
Oertli B, Auderset Joye D, Castella E, Juge R, Lachavanne J-B (2000) Diversité biologique et typologie écologique des étangs et petits lacs de Suisse. Swiss Agency for the Environment, Forests and Landscape, Laboratory of Ecology and Aquatic Biology, University of Geneva, Geneva
Oksanen AJ, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: Community Ecology Package. http://mirror.bjtu.edu.cn/cran/web/packages/vegan/vegan.pdf
Pálffy K, Présing M, Vörös L (2013) Diversity patterns of trait-based phytoplankton functional groups in two basins of a large, shallow lake (Lake Balaton, Hungary) with different trophic state. Aquat Ecol 47:195–210. https://doi.org/10.1007/s10452-013-9434-3
Pecorari S, José de Paggi S, Paggi JC (2006) Assesment of the urbanization effect on a lake by zooplankton. Water Resour 33:677–685. https://doi.org/10.1134/S0097807806060091
Petkovski TK (1983) Fauna of Macedonia V: Kalanoids - Calanoida (Crustacea - Copepoda). Macedonian Museum of Natural History, Skopje, p 182 (in Macedonian)
Pinheiro J, Bates D, DebRoy S, Sarkar D (2020) nlme: linear and nonlinear mixed effects models. R package. Version 3.1–150. https://cran.r-project.org/package=nlme
Porter KG, Orcutt JD (1980) Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. In: Kerfoot WC (ed) Evolution and ecology of zooplankton communities. University Press of New England, Hanover, pp 268–281
Ptacnik R, Lepistö L, Willén E, Brettum P, Andersen T, Rekolainen S, Lyche Solheim A, Carvalho L (2008) Quantitative responses of lake phytoplankton to eutrophication in northern Europe. Aquat Ecol 42:227–236. https://doi.org/10.1007/s10452-008-9181-z
QGIS Development Team (2021) QGIS geographic information system. Open source geospatial foundation project. http://qgis.osgeo.org
Quintana XD, Boix D, Badosa A, Brucet S, Compte J, Gascón S, López-Flores R, Sala J, Moreno-Amich R (2006) Community structure in mediterranean shallow lentic ecosystems: size-based vs. taxon-based approaches. Limnetica 25:303–320
R Core Team (2019) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.r-project.org
Reynolds CS (2006) The Ecology of Phytoplankton. Cambridge University Press, Cambridge
Rimet F, Druart J-C (2018) A trait database for phytoplankton of temperate lakes. Ann Limnol - Int J Lim 54:18. https://doi.org/10.1051/limn/2018009
Rosset V, Angélibert S, Arthaud F, Bornette G, Robin J, Wezel A, Vallod D, Oertli B (2014) Is eutrophication really a major impairment for small waterbody biodiversity? J Appl Ecol 51:415–425. https://doi.org/10.1111/1365-2664.12201
Rylov VM (1948) Crustaceans, Freshwater Cyclopoida, Fauna of the USSR, vol III. Nauka, Moscow-Leningrad, p 318 (in Russian)
Salmaso N, Padisák J (2007) Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578:97–112. https://doi.org/10.1007/s10750-006-0437-0
Salmaso N, Naselli-Flores L, Padisák J (2015) Functional classifications and their application in phytoplankton ecology. Freshw Biol 60:603–619. https://doi.org/10.1111/fwb.12520
Sánchez ML, Schiaffino MR, Graziano M, Huber P, Lagomarsino L, Minotti P, Zagarese H, Izaguirre I (2021) Effect of land use on the phytoplankton community of Pampean shallow lakes of the Salado river basin (Buenos Aires Province, Argentina). Aquat Ecol 55:417–435. https://doi.org/10.1007/s10452-021-09835-8
Santos JBO, Silva LHS, Branco CWC, Huszar VLM (2016) The roles of environmental conditions and geographical distances on the species turnover of the whole phytoplankton and zooplankton communities and their subsets in tropical reservoirs. Hydrobiologia 764:171–186. https://doi.org/10.1007/s10750-015-2296-z
Schagerl M, Angeler DG, Biester A (2011) Phytoplankton community structure along saline and trophic state gradients in urban clay-pit ponds (Austria). Fundam Appl Limnol 178(4):301–314. https://doi.org/10.1127/1863-9135/2011/0178-0301
Schmera D, Heino J, Podani J, Erős T, Dolédec S (2017) Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 787:27–44. https://doi.org/10.1007/s10750-016-2974-5
Shannon CE, Weaver W (1963) The mathematical theory of communication. Illinois, Urbana
Shurin JB, Havel JE, Leibold MA, Pinel-Alloul B (2000) Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology 81:3062–3073. https://doi.org/10.1890/0012-9658(2000)081[3062:LARZSR]2.0.CO;2
Simões NR, Lansac-Tôha FA, Velho LFM, Bonecker CC (2012) Intra and inter-annual structure of zooplankton communities in floodplain lakes: a long-term ecological research study. Rev Biol Trop 60:1819–1836
Simões NR, Nunes AH, Dias JD, Lansac-Tôha FA, Velho LFM, Bonecker CC (2015) Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758:3–17. https://doi.org/10.1007/s10750-015-2260-y
Sodré EdO, Bozelli RL (2019) How planktonic microcrustaceans respond to environment and affect ecosystem: a functional trait perspective. Int Aquat Res 11:207–223. https://doi.org/10.1007/s40071-019-0233-x
Soliveres S, van der Plas F, Manning P et al (2016) Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536:456–459. https://doi.org/10.1038/nature19092
Špoljar M, Dražina T, Habdija I, Meseljević M, Grčić Z (2011a) Contrasting zooplankton assemblages in two oxbow lakes with low transparencies and narrow emergent macrophyte belts (Krapina River, Croatia). Internat Rev Hydrobiol 96:175–190. https://doi.org/10.1002/iroh.201011257
Špoljar M, Tomljanović T, Lalić I (2011b) Eutrophication impact on zooplankton community: a shallow lake approach. Holist Approach Environ 1:131–142
Šramek-Hušek R, Straškraba M, Brtek J (1962) Lupenorošci - Branchiopoda Fauna ČSR, vol 15. Vydalo Nakladetestvi Československe akademie ved, Praha, p 470
Staehr PA, Baastrup-Spohr L, Sand-Jensen K, Stedmon C (2012) Lake metabolism scales with lake morphometry and catchment conditions. Aquat Sci 74:155–169. https://doi.org/10.1007/s00027-011-0207-6
Stamenković O, Stojković Piperac M, Milošević D, Buzhdygan OY, Petrović A, Jenačković D, Ðurđević A, Čerba D, Vlaičević B, Nikolić D, Simić V (2019) Anthropogenic pressure explains variations in the biodiversity of pond communities along environmental gradients: a case study in south-eastern Serbia. Hydrobiologia 838:65–83. https://doi.org/10.1007/s10750-019-03978-4
Stamenković O, Simić V, Stojković Piperac M, Milošević D, Simić S, Ostojić A, Đorđević N, Čerba D, Petrović A, Jenačković Gocić D, Đurđević A, Koh M, Buzhdygan OY (2021) Direct, water-chemistry mediated, and cascading effects of human-impact intensification on multitrophic biodiversity in ponds. Aquat Ecol 55:187–214. https://doi.org/10.1007/s10452-020-09822-5
Stanković I, Vlahović T, Gligora Udovič M, Várbíró G, Borics G (2012) Phytoplankton functional and morpho-functional approach in large floodplain rivers. In: Salmaso N, Naselli-Flores L, Cerasino L, Flaim G, Tolotti M, Padisák J (eds) Phytoplankton responses to human impacts at different scales. Developments in hydrobiology 221. Springer, Dordrecht, pp 217–231. https://doi.org/10.1007/978-94-007-5790-5_17
Stević F, Mihaljević M, Špoljarić D (2013) Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia 709:143–158. https://doi.org/10.1007/s10750-013-1444-6
Stomp M, Huisman J, Mittelbach GG, Litchman E, Klausmeier CA (2011) Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92:2096–2107. https://doi.org/10.1890/10-1023.1
Strickland JDH, Parsons TR (1968) A practical handbook of sea-water analysis. Bull Fish Res Bord Can 167:1–310
Toporowska M, Ferencz B, Dawidek J (2018) Impact of lake-catchment processes on phytoplankton community structure in temperate shallow lakes. Ecohydrology 11:e2017. https://doi.org/10.1002/eco.2017
Török P, T-Krasznai E, B-Béres V, Bácsi I, Borics G, Tóthmérész B, Sayer E (2016) Functional diversity supports the biomass–diversity humped-back relationship in phytoplankton assemblages. Funct Ecol 30:1593–1602. https://doi.org/10.1111/1365-2435.12631
Trigal C, García-Criado F, Fernandez-Alaez C (2007) Macroinvertebrate communities of Mediterranean ponds (North Iberian Plateau): importance of natural and human-induced variability. Freshw Biol 52:2042–2055
Trigal C, Fernandez-Alaez C, Fernandez-Alaez M (2014) Congruence between functional and taxonomic patterns of benthic and planktonic assemblages in flatland ponds. Aquat Sci 76:61–72. https://doi.org/10.1007/s00027-013-0312-9
Underwood GJC, Kromkamp J (1999) Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res 29:93–153
UNESCO (1966) Determinations of photosynthetic pigments in seawater, report of SCOR-UNESCO working group 17. Monogr Oceanogr Meth, Paris, p 69
Utermöhl H (1958) Zur vervolkmmung der quantitativen phytoplankton methodik. Mitt Int Ver Theor Angew Limnol 9:1–38
Van Egeren SJ, Dodson SI, Torke B, Maxted JT (2011) The relative significance of environmental and anthropogenic factors affecting zooplankton community structure in southeast Wisconsin Till plain lakes. Hydrobiologia 668:137–146. https://doi.org/10.1007/s10750-011-0636-1
Villéger S, Miranda JR, Hernandez DF, Mouillot D (2012) Low functional β-diversity despite high taxonomic β-diversity among tropical estuarine fish communities. PLoS ONE 7:e40679. https://doi.org/10.1371/journal.pone.0040679
Wehr JD, Sheath RG (2003) Freshwater algae of North America: ecology and classification. Academic, USA, p 826
Williams PJ, Thomas DN, Reynolds CS (2002) Phytoplankton productivity: carbon assimilation in marine and freshwater ecosystems. Wiley, Oxford, UK
Živković A (1987) Fauna Rotatoria jugoslovenskog dela Dunava i voda njegovog plavnog područja kod Apatina. Otisak iz Zbornika radova o fauni SR Srbije, IV, SANU, Odeljenje prirodno-matematičkih nauka, Beograd, pp 7–115
Acknowledgements
This study was supported by the Serbian Ministry of Education, Science and Technological Development (Agreement numbers 451-03-68/2022-14/200124 and 451-03-68/2022-14/ 200122) and a bilateral cooperation scientific project “Trophic connections of freshwater ichthyofauna: fish diet in sustainable aquaculture” between Serbia and Croatia funded by the Serbian Ministry of Education, Science and Technological Development and Croatian Ministry of Science and Education. We thank Sonja Dix (UK) for the final English corrections.
Funding
The funding was provided by the Serbian Ministry of Education, Science and Technological Development and Croatian Ministry of Science and Education.
Author information
Authors and Affiliations
Contributions
OS, MSP, DČ, DM, and OYB designed the study and developed the analytical procedure. AO, NBĐ and SBS contributed data. DC provided the maps of the study areas. OS, with inputs from OYB, performed statistical analysis. OS wrote the original draft. All authors contributed substantially to writing and editing the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflict of interests to declare.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Stamenković, O., Stojković Piperac, M., Čerba, D. et al. Taxonomic and functional aspects of diversity and composition of plankton communities in shallow lentic ecosystems along the human impact and environmental gradients. Aquat Sci 84, 57 (2022). https://doi.org/10.1007/s00027-022-00893-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00027-022-00893-0


