Skip to main content

Advertisement

Log in

Overland flow during a storm event strongly affects stream water chemistry and bacterial community structure

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

As flood events are expected to become more frequent due to climate change, investigating how overland flow exports terrestrial nutrients, carbon and living organisms into aquatic systems is essential for understanding both soil and stream ecosystem status. Here we assessed how dissolved organic carbon (DOC), total suspended sediments (TSS), and stream bacterial diversity responded to stream discharge and overland flow during stormflow in a tropical catchment. A higher humification index and a decreasing ratio of allochthonous to autochthonous DOC indicated that DOC from soils was exported to stream during the flood. The δ13C and δ15N of particulate matter was indicative of a source in the cultivated areas of the upper catchment and of subsurface soils (stream banks and gullies) in the downstream section. Bacterial richness of particle-attached (PA) and the free-living (FL) fractions increased with the flood progression in the upstream section. Moreover, the community structure of the PA fraction in the stream was more similar to that of overland flow than was the FL fraction. This suggests that the soil PA bacterial community was washed-out with overland flow during the flood recession. The relative contribution of sources and the composition of TSS, rather than hydrological regime, significantly drove the composition of bacterial community. In conclusion, our results emphasize that overland flow during a flood event strongly influences the structure of stream bacterial communities further underlining the biological connectivity between terrestrial runoff and stream flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data are published on the DataSuds site of the IRD as Le et al. (2021) at http://doi.org/10.23708/K95OKX.

References

  • Adams HE, Crump BC, Kling GW (2014) Metacommunity dynamics of bacteria in an arctic lake: the impact of species sorting and mass effects on bacterial production and biogeography. Front Microbiol 5:82

    PubMed  PubMed Central  Google Scholar 

  • Agren A, Berggren M, Laudon H, Jansson M (2008) Terrestrial export of highly bioavailable carbon from small boreal catchments in spring floods. Freshw Biol 53:964–972

    Google Scholar 

  • Ali G, Roy A (2010) Shopping for hydrologically representative connectivity metrics in a humid temperate forested catchment. Water Resour Res. https://doi.org/10.1029/2010WR009442

    Article  Google Scholar 

  • Banach AM, Banach K, Visser EJW, Stępniewska Z, Smits AJM, Roelofs JGM, Lamers LPM (2009) Effects of summer flooding on floodplain biogeochemistry in Poland; implications for increased flooding frequency. Biogeochemistry 92:247–262

    Google Scholar 

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Int Conf Web Soc Media 8:361–362

    Google Scholar 

  • Belnap J, Welter JR, Grimm NB, Barger N, Ludwig JA (2005) Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 82:298–307

    Google Scholar 

  • Besemer K, Moeseneder MM, Arrieta JM, Herndl GJ, Peduzzi P (2005) Complexity of bacterial communities in a river-floodplain system (Danube, Austria). Appl Environ Microbiol 71:609–620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boithias L, Ribolzi O, Lacombe G, Thammahacksa C, Silvera N, Latsachack K et al (2021a) Quantifying the effect of overland flow on Escherichia coli pulses during floods: use of a tracer-based approach in an erosion-prone tropical catchment. J Hydrol 594:125935

    Google Scholar 

  • Boithias L, Auda Y, Audry S, Bricquet J-P, Chanhphengxay A, Chaplot V et al (2021b) The multiscale TROPIcal CatchmentS critical zone observatory M-TROPICS dataset II: land use, hydrology and sediment production monitoring in Houay Pano, northern Lao PDR. Hydrol Process 35:e14126

    Google Scholar 

  • Buffam I, Galloway JN, Blum LK, McGlathery KJ (2001) A stormflow/baseflow comparison of dissolved organic matter concentrations and bioavailability in an Appalachian stream. Biogeochemistry 53:269–306

    CAS  Google Scholar 

  • Capone KA, Dowd SE, Stamatas GN, Nikolovski J (2011) Diversity of the human skin microbiome early in life. J Investig Dermatol 131:2026–2032

    CAS  PubMed  Google Scholar 

  • Carney RL, Mitrovic SM, Jeffries T, Westhorpe D, Curlevski N, Seymour JR (2015) River bacterioplankton community responses to a high inflow event. Aquat Microb Ecol 75:187–205

    Google Scholar 

  • Carvalho P, Thomaz SM, Bini LM (2003) Effects of water level, abiotic and biotic factors on bacterioplankton abundance in lagoons of a tropical floodplain (Paraná River, Brazil). Hydrobiologia 510:67–74

    CAS  Google Scholar 

  • Causse J, Billen G, Garnier J, Henri-des-Tureaux T, Olasa X, Thammahacksa C et al (2015) Field and modelling studies of Escherichia coli loads in tropical streams of montane agro-ecosystems. J Hydroenvironment Res 9:496–507

    Google Scholar 

  • Chaplot VAM, Rumpel C, Valentin C (2005) Water erosion impact on soil and carbon redistributions within uplands of Mekong River. Glob Biogeochem Cycles. https://doi.org/10.1029/2005GB002493

    Article  Google Scholar 

  • Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar Chem 51:325–346

    CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM et al (2005) The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296

    CAS  PubMed  Google Scholar 

  • Cory RM, Miller MP, McKnight DM, Guerard JJ, Miller PL (2010) Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol Oceanogr Methods 8:67–78

    CAS  Google Scholar 

  • Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M et al (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eccles R, Zhang H, Hamilton D (2019) A review of the effects of climate change on riverine flooding in subtropical and tropical regions. J Water Clim Change 10:687–707

    Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans C, Freeman C, Cork L, Thomas D, Reynolds B, Billett M et al (2007) Evidence against recent climate-induced destabilisation of soil carbon from 14C analysis of riverine dissolved organic matter. Geophys Res Lett 34:L07407

    Google Scholar 

  • Evrard O, Laceby JP, Huon S, Lefèvre I, Sengtaheuanghoung O, Ribolzi O (2016) Combining multiple fallout radionuclides (137Cs, 7Be, 210Pbxs) to investigate temporal sediment source dynamics in tropical, ephemeral riverine systems. J Soils Sediments 16:1130–1144

    CAS  Google Scholar 

  • Fellman JB, D’Amore DV, Hood E (2008a) An evaluation of freezing as a preservation technique for analyzing dissolved organic C, N and P in surface water samples. Sci Total Environ 392:305–312

    CAS  PubMed  Google Scholar 

  • Fellman JB, D’Amore DV, Hood E, Boone RD (2008b) Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska. Biogeochemistry 88:169–184

    CAS  Google Scholar 

  • Fellman JB, Hood E, Edwards RT, D’Amore DV (2009) Changes in the concentration, biodegradability, and fluorescent properties of dissolved organic matter during stormflows in coastal temperate watersheds. J Geophys Res. https://doi.org/10.1029/2008JG000790

    Article  Google Scholar 

  • Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55:2452–2462

    CAS  Google Scholar 

  • Fuhrman JA, Comeau DE, Hagstrom A, Chan AM (1988) Extraction from natural planktonic microorganisms of DNA suitable for molecular biological studies. Appl Environ Microbiol 54:1426–1429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gourdin E, Evrard O, Huon S, Lefèvre I, Ribolzi O, Reyss J-L et al (2014a) Suspended sediment dynamics in a Southeast Asian mountainous catchment: combining river monitoring and fallout radionuclide tracers. J Hydrol 519:1811–1823

    CAS  Google Scholar 

  • Gourdin E, Evrard O, Huon S, Reyss JL, Ribolzi O, Bariac T et al (2014b) Spatial and temporal variability of Be-7 and Pb-210 wet deposition during four successive monsoon storms in a catchment of northern Laos. J Environ Radioact 136:195–205

    CAS  PubMed  Google Scholar 

  • Gourdin E, Huon S, Evrard O, Ribolzi O, Bariac T, Sengtaheuanghoung O, Ayrault S (2015) Sources and export of particle-borne organic matter during a monsoon flood in a catchment of northern Laos. Biogeosciences 12:1073–1089

    Google Scholar 

  • Gruber-Dorninger C, Pester M, Kitzinger K, Savio DF, Loy A, Rattei T et al (2015) Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME 9:643–655

    CAS  Google Scholar 

  • Harrell FEJ (2018) Hmisc: Harrell miscellaneous. R package version 4.1-1. http://CRAN.R-project.org/package=Hmisc. Accessed 15 Nov 2019

  • Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969

    Google Scholar 

  • Hood E, Gooseff MN, Johnson SL (2006) Changes in the character of stream water dissolved organic carbon during flushing in three small watersheds. Or J Geophys Res 111:G01007

    Google Scholar 

  • Huon S, De Rouw A, Bonte P, Robain H, Valentin C, Lefevre I et al (2013) Long-term soil carbon loss and accumulation in a catchment following the conversion of forest to arable land in northern Laos. Agric Ecosyst Environ 169:43–57

    Google Scholar 

  • Huon S, Evrard O, Gourdin E, Lefèvre I, Bariac T, Reyss J-L et al (2017) Suspended sediment source and propagation during monsoon events across nested sub-catchments with contrasted land uses in Laos. J Hydrol Reg Stud 9:69–84

    Google Scholar 

  • Inamdar S, Singh S, Dutta S, Levia D, Mitchell M, Scott D et al (2011) Fluorescence characteristics and sources of dissolved organic matter for stream water during storm events in a forested mid-Atlantic watershed. J Geophys Res. https://doi.org/10.1029/2011jg001735

    Article  Google Scholar 

  • Kalbitz K (2003) Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biol Biochem 35:1129–1142

    CAS  Google Scholar 

  • Kan J (2018) Storm events restructured bacterial community and their biogeochemical potentials. J Geophys Res Biogeosci 123:2257–2269

    CAS  Google Scholar 

  • Kirchman DL, Dittel AI, Findlay SEG, Fischer D (2004) Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat Microb Ecol 35:243–257

    Google Scholar 

  • Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E et al (2015) Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci USA 112:11371–11376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers L, Loeb R, Antheunisse A, Miletto M, Lucassen E, Boxman A et al (2006) Biogeochemical constraints on the ecological rehabilitation of wetland vegetation in river floodplains. Hydrobiologia 565:165–186

    CAS  Google Scholar 

  • Le Roux X, Bouskill NJ, Niboyet A, Barthes L, Dijkstra P, Field CB et al (2016) Predicting the responses of soil nitrite-oxidizers to multi-factorial global change: a trait-based approach. Front Microbiol 7:628

    PubMed  PubMed Central  Google Scholar 

  • Le HT, Rochelle-Newall E, Yves Auda OR, Sengtaheuanghoung O, Thébault E, Soulileuth B, Pommier T (2018) Vicinal land use change strongly drives stream bacterial community in a tropical montane catchment. FEMS Microbiol Ecol 94:1–15

    Google Scholar 

  • Le HT, Rochelle-Newall E, Ribolzi O, Janeau JL, Huon S, Latsachack K, Pommier T (2020) Land use strongly influences soil organic carbon and bacterial community export in runoff in tropical uplands. Land Degrad Dev 31:118–132

    Google Scholar 

  • Le TH, Pommier T, Ribolzi O, Soulileuth B, Huon S, Silvera N, Rochelle-Newall E (2021) Dataset of flood event in Houay Pano catchment, Laos on June 16th, 2014. DataSuds. https://doi.org/10.23708/K95OKX

  • Lindström ES, Langenheder S (2012) Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep 4:1–9

    PubMed  Google Scholar 

  • Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW et al (2016) High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol. https://doi.org/10.1038/s41559-016-0015

    Article  PubMed  Google Scholar 

  • Luef B, Aspetsberger F, Hein T, Huber F, Peduzzi P (2007) Impact of hydrology on free-living and particle-associated microorganisms in a river floodplain system (Danube, Austria). Freshw Biol 52:1043–1057

    Google Scholar 

  • Maiga-Yaleu S, Guiguemde I, Yacouba H, Karambiri H, Ribolzi O, Bary A et al (2013) Soil crusting impact on soil organic carbon losses by water erosion. CATENA 107:26–34

    CAS  Google Scholar 

  • Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol 36:1033–1050

    Google Scholar 

  • McLaughlin C, Kaplan LA (2013) Biological lability of dissolved organic carbon in stream water and contributing terrestrial sources. Freshw Sci 32:1219–1230

    Google Scholar 

  • Mügler C, Ribolzi O, Viguier M, Janeau J-L, Jardé E, Latsachack K et al (2021) Experimental and modelling evidence of splash effects on manure borne Escherichia coli washoff. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13011-8

    Article  Google Scholar 

  • Murphy KR, Stedmon CA, Graeber D, Bro R (2013) Fluorescence spectroscopy and multi-way techniques. PARAFAC Anal Methods 5:6557–6566

    CAS  Google Scholar 

  • Nakhle P, Ribolzi O, Boithias L, Rattanavong S, Auda Y, Sayavong S et al (2021) Effects of hydrological regime and land use on in-stream Escherichia coli concentration in the Mekong basin, Lao PDR. Sci Rep 11:3460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno T (2002) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol 36:742–746

    CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet GF, Friendly M, Kindt R, Legendre P, McGlinn D et al (2017) Vegan: community ecology package. R package version 2.4-5. http://CRAN.R-project.org/package=vegan. Accessed 6 Jan 2018

  • Patin J, Mouche E, Ribolzi O, Sengtahevanghoung O, Latsachak KO, Soulileuth B et al (2018) Effect of land use on interrill erosion in a montane catchment of Northern Laos: an analysis based on a pluri-annual runoff and soil loss database. J Hydrol 563:480–494

    Google Scholar 

  • Poeppl R, Keiler M, Von Elverfeldt K, Zweimueller I, Glade T (2012) The influence of riparian vegetation cover on diffuse lateral sediment connectivity and biogeomorphic processes in a medium-sized agricultural catchment, Austria. Geogr Ann Ser A Phys Geogr 94:511–529

    Google Scholar 

  • Polade SD, Gershunov A, Cayan DR, Dettinger MD, Pierce DW (2017) Precipitation in a warming world: assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci Rep. https://doi.org/10.1038/s41598-017-11285-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Pruesse E, Quast C, Knittel FB, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribolzi O, Moussa R, Gaudu JC, Valles V, Voltz M (1997) Stream water regime change at autumn recharge on a Mediterranean farmed catchment using a natural tracer. C R L’academie Sci 324:985–992

    CAS  Google Scholar 

  • Ribolzi O, Evrard O, Huon S, Rochelle-Newall E, Henri-des-Tureaux T, Silvera N et al (2016) Use of fallout radionuclides ((7)Be, (210)Pb) to estimate resuspension of Escherichia coli from streambed sediments during floods in a tropical montane catchment. Environ Sci Pollut Res 23:3427–3435

    CAS  Google Scholar 

  • Ribolzi O, Evrard O, Huon S, de Rouw A, Silvera N, Latsachack KO et al (2017) From shifting cultivation to teak plantation: effect on overland flow and sediment yield in a montane tropical catchment. Sci Rep 7:1–12

    CAS  Google Scholar 

  • Ribolzi O, Lacombe G, Pierret A, Robain H, Sounyafong P, de Rouw A, Soulileuth B, Mouche E, Huon S, Silvera N, Latxachak KO, Sengtaheuanghoung O, Valentin C (2018) Interacting land use and soil surface dynamics control groundwater outflow in a montane catchment of the lower Mekong basin. Agric Ecosyst Environ 268:90–102

    Google Scholar 

  • Richter M (2016) Classifications of climates in the tropics. In: Pancel L, Köhl M (eds) Tropical forestry handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54601-3_35

    Chapter  Google Scholar 

  • Rochelle-Newall EJ, Chu VT, Pringault O, Amouroux D, Arfi R, Bettarel Y et al (2011) Phytoplankton diversity and productivity in a highly turbid, tropical coastal system (Bach Dang Estuary, Vietnam). Mar Pollut Bull 62:2317–2329

    CAS  PubMed  Google Scholar 

  • Rochelle-Newall E, Hulot FD, Janeau JL, Merroune A (2014) CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems. Environ Monit Assess 186:589–596

    CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staley C, Gould TJ, Wang P, Phillips J, Cotner JB, Sadowsky MJ (2015) Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Sci Total Environ 505:435–445

    CAS  PubMed  Google Scholar 

  • Syed KH, Goodrich DC, Myers DE, Sorooshian S (2003) Spatial characteristics of thunderstorm rainfall fields and their relation to runoff. J Hydrol 217:1–21

    Google Scholar 

  • Talbot CJ, Bennett EM, Cassell K et al (2018) The impact of flooding on aquatic ecosystem services. Biogeochemistry 141:439–461

    PubMed  PubMed Central  Google Scholar 

  • Tang X, Chao J, Gong Y, Wang Y, Wilhelm SW, Gao G (2017) Spatiotemporal dynamics of bacterial community composition in large shallow eutrophic Lake Taihu: high overlap between free-living and particle-attached assemblages. Limnol Oceanogr 62:1366–1382

    CAS  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Google Scholar 

  • Trevisani S, Cavalli M (2016) Topography-based flow-directional roughness: potential and challenges. Earth Surf Dyn 4:343–358

    Google Scholar 

  • Ulrich N, Rosenberger A, Brislawn C, Wright J, Kessler C, Toole D et al (2016) Restructuring of the aquatic bacterial community by hydric dynamics associated with superstorm sandy. Appl Environ Microbiol 82:3525–3536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valentin C, Bresson LM (1992) Morphology, genesis and classification of surface crusts in loamy and sandy soils. Geoderma 55:225–245

    Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    CAS  PubMed  Google Scholar 

  • Yamashita Y, Tanoue E (2003) Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Mar Chem 82:255–271

    CAS  Google Scholar 

  • Yamashita Y, Maie N, Briceno H, Jaffe R (2010) Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield, Venezuela. J Geophys Res Biogeosci 115:1–15

    Google Scholar 

  • Yamashita Y, Kloeppel BD, Knoepp J, Zausen GL, Jaffe R (2011) Effects of watershed history on dissolved organic matter characteristics in headwater streams. Ecosystems 14:1110–1122

    CAS  Google Scholar 

  • Zeglin LH (2015) Stream microbial diversity in response to environmental changes: review and synthesis of existing research. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00454

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Lao PDR Department of Agricultural Land Management (DALaM). We also thank the M-TROPICS Critical Zone Observatory (https://mtropics.obs-mip.fr/), which belongs to the French Research Infrastructure OZCAR (http://www.ozcar-ri.org/), for the logistic support. Julie Legoupi is thanked for her help with the figures. This work forms part of the Ph.D. thesis requirements of HL who was financed by a Ph.D. grant from the USTH, Vietnam and the IRD (ARTS).

Funding

This study was funded by the Institute of Research for sustainable Development (IRD, main funding), the French National Research Agency (TecItEasy project, ANR-13-AGRO-0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Rochelle-Newall.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest or competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 72300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, H.T., Pommier, T., Ribolzi, O. et al. Overland flow during a storm event strongly affects stream water chemistry and bacterial community structure. Aquat Sci 84, 7 (2022). https://doi.org/10.1007/s00027-021-00839-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-021-00839-y

Keywords

Navigation