Variability in fluorescent dissolved organic matter concentrations across diel to seasonal time scales is driven by water temperature and meteorology in a eutrophic reservoir

Abstract

Freshwater reservoirs play a significant role in the global carbon cycle by processing and storing large quantities of dissolved organic matter (DOM). Quantifying the magnitude of DOM fluctuations across multiple temporal scales can advance our understanding of how the controls on reservoir carbon cycling may vary. We monitored fluorescent DOM (fDOM) using an in situ epilimnetic sensor at a ten-minute resolution over one year in a eutrophic reservoir in southwestern Virginia, USA with low dissolved organic carbon concentrations (2–6 mg L−1). We determined the dominant time scales of variability and key environmental predictors of fDOM concentrations using continuous wavelet transforms and autoregressive time series modeling. Throughout the year, fDOM concentrations varied considerably, with maximum concentrations in the autumn (30.0 quinine sulfate units) and minimum concentrations in the spring (4.7 quinine sulfate units). The monthly time scale was the dominant time scale of variability, but the daily time scale was significant during the summer. Based on the autoregressive time series analysis, precipitation, water temperature, and shortwave radiation were important environmental predictors of fDOM on daily time scales, while water temperature alone best predicted monthly variability. Our study is one of the first to reveal substantial variability in fDOM concentrations during a full year, emphasizing the need for long-term, high-frequency in situ DOM monitoring to capture changes occurring on multiple time scales. By quantifying the variability and environmental predictors of fDOM on different time scales, we are able to better understand how and why DOM concentrations change throughout the year.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of data and material

All data used in this analysis are published in the Environmental Data Initiative repository: Ice cover data (Carey 2019; https://doi.org/10.6073/pasta/eecfa7ba08f9ee233ece6df0e9cbcb3a). Inflow data (Carey et al. 2020d; https://doi.org/10.6073/pasta/30caad87e3e5aafd1f9ace836c94d2fa). Temperature CTD profiles (Carey et al. 2019a; https://doi.org/10.6073/pasta/1fc7d2a5c69c6a651793dba06d375ae2). DOC and phosphorus concentrations (Carey et al. 2020b; https://doi.org/10.6073/pasta/0d29704769868facec3e238e64d35557) EXO sonde (Carey et al. 2020a; https://doi.org/10.6073/pasta/b888ac006ef4ca601f63e2703d7476b9). Meteorological data (Carey et al. 2020c; https://doi.org/10.6073/pasta/ea47ae493c7025d61245287649895e60). Secchi data (Carey et al. 2019b; https://doi.org/10.6073/pasta/e9b8ee83bc7fad6dcdf439a41ad80a3c). Filtered chlorophyll-a data (Carey et al. 2020e; https://doi.org/10.6073/pasta/4103be6062b768867e1f3b016665a35c).

Code availability

Code used for CWT and AR analyses can be found at https://doi.org/10.5281/zenodo.4430029 (Howard 2021).

References

  1. Amon RMW, Benner R (1996) Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochim Cosmochim Acta 60:1783–1792. https://doi.org/10.1016/0016-7037(96)00055-5

    CAS  Article  Google Scholar 

  2. Barton K (2020) MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn

  3. Bastviken D, Olsson M, Tranvik L (2003) Simultaneous measurements of organic carbon mineralization and bacterial production in oxic and anoxic lake sediments. Microb Ecol 46:73–82. https://doi.org/10.1007/s00248-002-1061-9

    CAS  Article  PubMed  Google Scholar 

  4. Bastviken D, Persson L, Odham G, Tranvik L (2004) Degradation of dissolved organic matter in oxic and anoxic lake water. Limnol Oceanogr 49:109–116. https://doi.org/10.4319/lo.2004.49.1.0109

    CAS  Article  Google Scholar 

  5. Box GEP, Pierce DA (1970) Distribution of residual autocorrelations in autoregressive-integrated moving average time series. J Am Stat Assoc 65:1509–1526

    Article  Google Scholar 

  6. Bruesewitz DA, Carey CC, Richardson DC, Weathers KC (2015) Under-ice thermal stratification dynamics of a large, deep lake revealed by high-frequency data. Limnol Oceanogr 60:347–359. https://doi.org/10.1002/lno.10014

    Article  Google Scholar 

  7. Bunn A, Korpela M, Biondi F, Campelo F, Mérian P, Qeadan F, Zang C (2020) dplR: Dendrochronology Program Library in R. R package version 1.7.1. https://CRAN.R-project.org/package=dplR

  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, second. Springer, New York

    Google Scholar 

  9. Carey CC (2019) Ice cover data for Falling Creek Reservoir, Vinton, Virginia, USA for 2013-2019 ver 1. Environ Data Initiat. https://doi.org/10.6073/pasta/eecfa7ba08f9ee233ece6df0e9cbcb3a. Accessed 9 Apr 2020

  10. Carey CC, Hanson PC, Lathrop RC, St. Amand AL (2016) Using wavelet analyses to examine variability in phytoplankton seasonal succession and annual periodicity. J Plankton Res 38:27–40. https://doi.org/10.1093/plankt/fbv116

    CAS  Article  Google Scholar 

  11. Carey CC, Lewis AS, McClure RP, Gerling AB, Doubek JP, Chen S, Lofton ME, Hamre KD (2019a) Time series of high-frequency profiles of depth, temperature, dissolved oxygen, conductivity, specific conductivity, chlorophyll a, turbidity, pH, oxidation-reduction potential, photosynthetic active radiation, and descent rate for Beaverdam Reservoir, Carvins Cove Reservoir, Falling Creek Reservoir, Gatewood Reservoir, and Spring Hollow Reservoir in Southwestern Virginia, USA 2013-2019 ver 10. Environ Data Initiat. https://doi.org/10.6073/pasta/1fc7d2a5c69c6a651793dba06d375ae2. Accessed 3 May 2020

  12. Carey CC, Gerling AB, Doubek JP, Hamre KD, McClure RP, Lofton ME, Farrell KJ, Wander HL (2019b) Secchi depth data and discrete depth profiles of photosynthetically active radiation, temperature, dissolved oxygen, and pH for Beaverdam Reservoir, Carvins Cove Reservoir, Falling Creek Reservoir, Gatewood Reservoir, and Spring Hollow Reservoir in southwestern Virginia, USA 2013-2018 ver 7. Environ Data Initiat. https://doi.org/10.6073/pasta/e9b8ee83bc7fad6dcdf439a41ad80a3c. Accessed 3 Dec 2020

  13. Carey CC, Bookout BJ, Woelmer WM, Lewis AS (2020a) Time series of high-frequency sensor data measuring water temperature, dissolved oxygen, conductivity, specific conductivity, total dissolved solids, chlorophyll a, phycocyanin, and fluorescent dissolved organic matter at discrete depths in Falling Creek Reservoir, Virginia, USA in 2018-2019 ver 4. Environ Data Initiat. https://doi.org/10.6073/pasta/b888ac006ef4ca601f63e2703d7476b9. Accessed 13 Mar 2020

  14. Carey CC, Wander HL, Woelmer WM, Lofton ME, Gerling AB, McClure RP, Doubek JP, Niederlehner BR, Farrell KJ (2020b) Water chemistry time series for Beaverdam Reservoir, Carvins Cove Reservoir, Falling Creek Reservoir, Gatewood Reservoir, and Spring Hollow Reservoir in southwestern Virginia, USA 2013-2019 ver 7. Environ Data Initiat. https://doi.org/10.6073/pasta/0d29704769868facec3e238e64d35557. Accessed 3 Dec 2020

  15. Carey CC, Bookout BJ, Lofton ME, McClure RP (2020c) Time series of high-frequency meteorological data at Falling Creek Reservoir, Virginia, USA 2015-2019 ver 4. Environ Data Initiat. https://doi.org/10.6073/pasta/ea47ae493c7025d61245287649895e60. Accessed 13 Mar 2020

  16. Carey CC, Hounshell AG, Lofton ME, Bookout BJ, Corrigan RS, Gerling AB, McClure RP, Woelmer WM (2020d) Discharge time series for the primary inflow tributary entering Falling Creek Reservoir, Vinton, Virginia, USA 2013-2020 ver 6. Environ Data Initiat. https://doi.org/10.6073/pasta/30caad87e3e5aafd1f9ace836c94d2fa. Accessed 13 Mar 2020

  17. Carey CC, Lofton ME, Woelmer WM, Wynne JH, Doubek JP, Hamre KD, and Niederlehner BR (2020e) Filtered chlorophyll a time series for Beaverdam Reservoir, Carvins Cove Reservoir, Claytor Lake, Falling Creek Reservoir, Gatewood Reservoir, Smith Mountain Lake, and Spring Hollow Reservoir in southwestern Virginia, USA during 2014-2019 ver 1. Environ Data Initiat. https://doi.org/10.6073/pasta/4103be6062b768867e1f3b016665a35c. Accessed 3 Dec 2020

  18. Carlson RE, Simpson J (1996) A coordinator’s guide to volunteer lake monitoring methods. North Am Lake Manag Soc

  19. Catalán N, Marcé R, Kothawala DN, Tranvik LJ (2016) Organic carbon decomposition rates controlled by water retention time across inland waters. Nat Geosci 9:501–504. https://doi.org/10.1038/ngeo2720

    CAS  Article  Google Scholar 

  20. Clow DW, Stackpoole SM, Verdin KL, Butman DE, Zhu Z, Krabbenhoft DP, Striegl RG (2015) Organic carbon burial in lakes and reservoirs of the conterminous United States. Environ Sci Technol 49:7614–7622. https://doi.org/10.1021/acs.est.5b00373

    CAS  Article  PubMed  Google Scholar 

  21. Coble PG, Spencer RGM, Baker A, Reynolds DM (2014) Aquatic organic matter fluorescence. In: Aquatic organic matter fluorescence, pp 75–122

  22. Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185. https://doi.org/10.1007/s10021-006-9013-8

    CAS  Article  Google Scholar 

  23. Cory RM, Kling GW (2018) Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnol Oceanogr Lett 3:102–116. https://doi.org/10.1002/lol2.10060

    CAS  Article  Google Scholar 

  24. Curtis PJ, Adams HE (1995) Dissolved organic matter quantity and quality from freshwater and saltwater lakes in east-central Alberta. Biogeochemistry 30:59–76. https://doi.org/10.1007/BF02181040

    CAS  Article  Google Scholar 

  25. de Eyto E, Jennings E, Ryder E, Sparber K, Dillane M, Dalton C, Poole R (2016) Response of a humic lake ecosystem to an extreme precipitation event: physical, chemical, and biological implications. Inl Waters 6:483–498. https://doi.org/10.1080/iw-6.4.875

    Article  Google Scholar 

  26. Deemer BR, Harrison JA, Li S et al (2016) Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience 66:949–964. https://doi.org/10.1093/biosci/biw117

    Article  PubMed  PubMed Central  Google Scholar 

  27. Denfeld BA, Kortelainen P, Rantakari M, Sobek S, Weyhenmeyer GA (2016) Regional variability and drivers of below Ice CO2 in boreal and subarctic lakes. Ecosystems 19:461–476. https://doi.org/10.1007/s10021-015-9944-z

    CAS  Article  Google Scholar 

  28. Dinsmore KJ, Billett MF, Dyson KE (2013) Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment. Glob Chang Biol 19:2133–2148. https://doi.org/10.1111/gcb.12209

    CAS  Article  PubMed  Google Scholar 

  29. Dormann CF, Elith J, Bacher S et al (2013) Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop) 36:27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  30. Doubek JP, Carey CC (2017) Catchment, morphometric, and water quality characteristics differ between reservoirs and naturally formed lakes on a latitudinal gradient in the conterminous United States. Inl Waters 7:171–180. https://doi.org/10.1080/20442041.2017.1293317

    CAS  Article  Google Scholar 

  31. Doubek JP, Carey CC, Lavender M, Winegardner K, Beaulleu M, Kelly PT, Pollard AI, Straile D (2019) Calanoid copepod zooplankton density is positively associated with water residence time across the continental United States. PLoS ONE 14:1–22. https://doi.org/10.1371/journal.pone.0209567

    CAS  Article  Google Scholar 

  32. Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte DM, Kortelainen P, Prairie YT, Laube KA (2008) Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochem Cycles 22:GB1018. https://doi.org/10.1029/2006GB002854

  33. Downing BD, Boss E, Bergamaschi BA, Fleck JA, Lionberger MA, Ganju NK, Schoellhamer DH, Fujii R (2009) Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements. Limnol Oceanogr Methods 7:119–131. https://doi.org/10.4319/lom.2009.7.119

    CAS  Article  Google Scholar 

  34. Downing BD, Pellerin BA, Bergamaschi BA, Saraceno JF, Kraus TEC (2012) Seeing the light: the effects of particles, dissolved materials, and temperature on in situ measurements of DOM fluorescence in rivers and streams. Limnol Oceanogr Methods 10:767–775. https://doi.org/10.4319/lom.2012.10.767

    CAS  Article  Google Scholar 

  35. Duffy CJ, Dugan HA, Hanson PC (2018) The age of water and carbon in lake-catchments: a simple dynamical model. Limnol Oceanogr Lett 3:236–245. https://doi.org/10.1002/lol2.10070

    Article  Google Scholar 

  36. Engstrom BR (1987) Influence of vegetation and hydrology on the humus budgets of Labrador lakes. Can J Fish Aquat Sci 44:1306–1314

    Article  Google Scholar 

  37. Environmental data MVM (2020) Swedish University of Agricultural Sciences (SLU). Data host lakes and watercourses, and Data host agricultural land. http://miljodata.slu.se/mvm/2020-05-26

  38. Fasching C, Behounek B, Singer GA, Battin TJ (2014) Microbial degradation of terrigenous dissolved organic matter and potential consequences for carbon cycling in brown-water streams. Sci Rep 4:4981. https://doi.org/10.1038/srep04981

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55:2452–2462. https://doi.org/10.4319/lo.2010.55.6.2452

    CAS  Article  Google Scholar 

  40. Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001) Export of organic carbon from peat soils. Nature 412:785. https://doi.org/10.1038/35090628

    CAS  Article  PubMed  Google Scholar 

  41. Gerling AB, Browne RG, Gantzer PA, Mobley MH, Little JC, Carey CC (2014) First report of the successful operation of a side stream supersaturation hypolimnetic oxygenation system in a eutrophic, shallow reservoir. Water Res 67:129–143. https://doi.org/10.1016/j.watres.2014.09.002

    CAS  Article  PubMed  Google Scholar 

  42. Gerling AB, Munger ZW, Doubek JP, Hamre KD, Gantzer PA, Little JC, Carey CC (2016) Whole-catchment manipulations of internal and external loading reveal the sensitivity of a century-old reservoir to hypoxia. Ecosystems 19:555–571. https://doi.org/10.1007/s10021-015-9951-0

    Article  Google Scholar 

  43. Gonsior M, Schmitt-Kopplin P, Bastviken D (2013) Depth-dependent molecular composition and photo-reactivity of dissolved organic matter in a boreal lake under winter and summer conditions. Biogeosciences 10:6945–6956. https://doi.org/10.5194/bg-10-6945-2013

    CAS  Article  Google Scholar 

  44. Górniak A, Zieli P, Jekatierynczuk-Rudczyk E, Grabowska M, Suchowolec T (2002) The role of dissolved organic carbon in a shallow lowland reservoir ecosystem—a long-term study. Acta Hydrochim Hydrobiol 30:179–189

    Article  Google Scholar 

  45. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys Eur Geosci Union 11:561–566

    Article  Google Scholar 

  46. Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:478–481. https://doi.org/10.1038/nature09186

    CAS  Article  PubMed  Google Scholar 

  47. Hampton SE, Homes EE, Scheef LP et al (2013) Quantifying effects of abiotic and biotic drivers on community dynamics with multivariate autoregressive (MAR) models. Ecology 94:2663–2669

    Article  Google Scholar 

  48. Hampton SE, Galloway AWE, Powers SM et al (2017) Ecology under lake ice. Ecol Lett 20:98–111. https://doi.org/10.1111/ele.12699

    Article  PubMed  Google Scholar 

  49. Hanson PC, Bade DL, Carpenter SR, Kratz TK (2003) Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48:1112–1119. https://doi.org/10.4319/lo.2003.48.3.1112

    CAS  Article  Google Scholar 

  50. Hanson PC, Pace ML, Carpenter SR, Cole JJ, Stanely EH (2015) Integrating landscape carbon cycling: research needs for resolving organic carbon budgets of lakes. Ecosystems 18:363–375. https://doi.org/10.1007/s10021-014-9826-9

    CAS  Article  Google Scholar 

  51. Hayes NM, Deemer BR, Corman JR, Razavi NR, Strock KE (2017) Key differences between lakes and reservoirs modify climate signals: a case for a new conceptual model. Limnol Oceanogr Lett 2:47–62. https://doi.org/10.1002/lol2.10036

    Article  Google Scholar 

  52. Howard DW (2021) dwh77/Variability_FCR_fDOM_MS_Code: Second release of associated code (Version v2.0.0). Zenodo. https://doi.org/10.5281/zenodo.4430029

  53. James RT (1991) Microbiology and chemistry of acid lakes in Florida: II. Seasonal relationships. Hydrobiologia 213:227–240. https://doi.org/10.1007/BF00016424

    CAS  Article  Google Scholar 

  54. Kaplan LA, Newbold JD, Van Horn DJ, Dow CL, Aufdenkampe AK, Jackson JK (2006) Organic matter transport in New York City drinking-water-supply watersheds. J North Am Benthol Soc 25:912–927. https://doi.org/10.1899/0887-3593(2006)025[0912:omtiny]2.0.co;2

    Article  Google Scholar 

  55. King LR (2019) Water-quality data from two sites on Milford Lake, Kansas, May 25–26, June 8–10, July 20–21, and September 14–15, 2016: U.S. Geological Survey data release. https://doi.org/10.5066/F78S4P4M

  56. Koenig LE, Shattuck MD, Snyder LE, Potter JD, McDowell WH (2017) Deconstructing the effects of flow on DOC, nitrate, and major ion interactions using a high-frequency aquatic sensor network. Water Resour Res 53:655–673. https://doi.org/10.1002/2017WR020739

    Article  Google Scholar 

  57. Kritzberg ES, Granéli W, Björk J, Brönmark C, Hallgren P, Nicolle A, Persson A, Hansson LA (2014) Warming and browning of lakes: Consequences for pelagic carbon metabolism and sediment delivery. Freshw Biol 59:325–336. https://doi.org/10.1111/fwb.12267

    CAS  Article  Google Scholar 

  58. Langman OC, Hanson PC, Carpenter SR, Hu YH (2010) Control of dissolved oxygen in northern temperate lakes over scales ranging from minutes to days. Aquat Biol 9:193–202. https://doi.org/10.3354/ab00249

    Article  Google Scholar 

  59. Lead PI N, Magnuson J, Carpenter S, Stanley E (2020a) North temperate lakes LTER: chemical limnology of primary study lakes: nutrients, pH and carbon 1981—current ver 52. Environ Data Initiat. https://doi.org/10.6073/pasta/8359d27bbd91028f222d923a7936077d. Accessed 10 Jun 2020

  60. Lead PI N, Magnuson J, Carpenter S, Stanley E (2020b) North temperate lakes LTER: high frequency data: meteorological, dissolved oxygen, chlorophyll, Phycocyanin—Lake Mendota Buoy 2006—current ver 31. Environ Data Initiat. https://doi.org/10.6073/pasta/c03b39550e79d002d82a2281f8546c78. Accessed 10 Jun 2020

  61. Lee EJ, Yoo GY, Jeong Y, Kim KU, Park JH, Oh NH (2015) Comparison of UV-VIS and FDOM sensors for in situ monitoring of stream DOC concentrations. Biogeosciences 12:3109–3118. https://doi.org/10.5194/bg-12-3109-2015

    Article  Google Scholar 

  62. Leech DM, Williamson CE (2001) In situ exposure to ultraviolet radiation alters the depth distribution of Daphnia. Limnol Oceanogr 46:416–420. https://doi.org/10.4319/lo.2001.46.2.0416

    Article  Google Scholar 

  63. Lønborg C, Davidson K, Álvarez-Salgado XA, Miller AEJ (2009) Bioavailability and bacterial degradation rates of dissolved organic matter in a temperate coastal area during an annual cycle. Mar Chem 113:219–226. https://doi.org/10.1016/j.marchem.2009.02.003

    CAS  Article  Google Scholar 

  64. Maeck A, Delsontro T, Mcginnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A (2013) Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol 47:8130–8137. https://doi.org/10.1021/es4003907

    CAS  Article  PubMed  Google Scholar 

  65. Mendonça R, Müller RA, Clow D, Verpoorter C, Raymond P, Tranvik LJ, Sobek S (2017) Organic carbon burial in global lakes and reservoirs. Nat Commun 8:1694. https://doi.org/10.1038/s41467-017-01789-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Miller WL (1998) Effects of UV radiation on aquatic humus: photochemical principles and experimental considerations. In: Hessen DO, Tranvik LJ (eds) Aquatic humic substances. Ecological studies (analysis and synthesis), vol 133. Springer. Berlin, Heidelberg, pp 135–153

    Google Scholar 

  67. Miller MP, McKnight DM, Chapra SC, Williams MW (2009) A model of degradation and production of three pools of dissolved organic matter in an alpine lak. Limnol Oceanogr 54:2213–2227. https://doi.org/10.4319/lo.2009.54.6.2213

    Article  Google Scholar 

  68. Miner BE, Kerr B (2011) Adaptation to local ultraviolet radiation conditions among neighbouring Daphnia populations. Proc R Soc B 278:1306–1313. https://doi.org/10.1098/rspb.2010.1663

    Article  PubMed  Google Scholar 

  69. Minor E, Stephens B (2008) Dissolved organic matter characteristics within the Lake Superior watershed. Org Geochem 39:1489–1501. https://doi.org/10.1016/j.orggeochem.2008.08.001

    CAS  Article  Google Scholar 

  70. Müller RA, Kothawala DN, Podgrajsek E, Sahlée E, Koehler B, Tranvik LJ, Weyhenmeyer GA (2014) Hourly, daily, and seasonal variability in the absorption spectra of chromophoric dissolved organic matter in a eutrophic, humic lake. J Geophys Res Biogeosci 119:1985–1998. https://doi.org/10.1002/2014JG002719

    CAS  Article  Google Scholar 

  71. National Ecological Observatory Network (2020) Data product DP1.20288.001, water quality. Provisional data downloaded from http://data.neonscience.org on May 27, 2020. Battelle, Boulder, CO, USA NEON

  72. Nicolle A, Hallgren P, Von Einem J, Kritzberg ES, Granéli W, Persson A, Brönmark C, Hansson LA (2012) Predicted warming and browning affect timing and magnitude of plankton phenological events in lakes: a mesocosm study. Freshw Biol 57:684–695. https://doi.org/10.1111/j.1365-2427.2012.02733.x

    Article  Google Scholar 

  73. Nyquist H (1928) Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng 47:617–644. https://doi.org/10.1109/T-AIEE.1928.5055024

    Article  Google Scholar 

  74. Osburn CL, Wigdahl CR, Fritz SC, Saros JE (2011) Dissolved organic matter composition and photoreactivity in prairie lakes of the U.S. Great Plains. Limnol Oceanogr 56:2371–2390. https://doi.org/10.4319/lo.2011.56.6.2371

    CAS  Article  Google Scholar 

  75. Pagano T, Bida M, Kenny JE (2014) Trends in levels of allochthonous dissolved organic carbon in natural water: a review of potential mechanisms under a changing climate. Water 6:2862–2897. https://doi.org/10.3390/w6102862

    Article  Google Scholar 

  76. R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  77. Romera-Castillo C, Sarmento H, Álvarez-Salgado XA, Gasol JM, Marrasé C (2010) Production of chromophoric dissolved organic matter by marine phytoplankton. Limnol Oceanogr 55:446–454. https://doi.org/10.4319/lo.2010.55.1.0446

    CAS  Article  Google Scholar 

  78. Ryder E, Jennings E, de Eyto E, Dillane M, NicAonghusa C, Pierson D, Moore K, Rouen M, Poole R (2012) Temperature quenching of CDOM fluorescence sensors: Temporal and spatial variability in the temperature response and a recommended temperature correction equation. Limnol Oceanogr Methods 10:1004–1010. https://doi.org/10.4319/lom.2012.10.1004

    CAS  Article  Google Scholar 

  79. Sadro S, Melack J (2012) The effect of an extreme rain event on the biogeochemistry and ecosystem metabolism of an oligotrophic high-elevation lake, Arctic. Antarct Alp Res 44:222–231. https://doi.org/10.1657/1938-4246-44.2.222

    Article  Google Scholar 

  80. Saraceno JF, Pellerin BA, Downing BD, Boss E, Bachand PAM, Bergamaschi BA (2009) High-frequency in situ optical measurements during a storm event: assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes. J Geophys Res 114:G00F09. https://doi.org/10.1029/2009JG000989

  81. Schindler DW, Bayley SE, Curtis PJ, Parker BR, Stainton MP, Kelly CA (1992) Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes. Hydrobiologia 229:1–21. https://doi.org/10.1007/BF00006987

    CAS  Article  Google Scholar 

  82. Seekell DA, Lapierre JF, Karlsson J (2015) Trade-offs between light and nutrient availability across gradients of dissolved organic carbon concentration in Swedish lakes: Implications for patterns in primary production. Can J Fish Aquat Sci 72:1663–1671. https://doi.org/10.1139/cjfas-2015-0187

    CAS  Article  Google Scholar 

  83. Shannon CE (1949) Communication in the presence of noise. Proc Inst Radio Eng 37:10–21. https://doi.org/10.1109/JRPROC.1949.232969

    Article  Google Scholar 

  84. Sharma S, Blagrave K, Magnuson JJ, O’Reilly CM, Oliver S, Batt RD, Magee MR, Straile D, Weyhenmeyer GA, Winslow L, Woolway RI (2019) Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat Clim Chang 9:227–231. https://doi.org/10.1038/s41558-018-0393-5

    Article  Google Scholar 

  85. Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ (2007) Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes. Limnol Oceanogr 52:1208–1219. https://doi.org/10.4319/lo.2007.52.3.1208

    CAS  Article  Google Scholar 

  86. Tittel J, Kamjunke N (2004) Metabolism of dissolved organic carbon by planktonic bacteria and mixotrophic algae in lake neutralisation experiments. Freshw Biol 49:1062–1071. https://doi.org/10.1111/j.1365-2427.2004.01241.x

    Article  Google Scholar 

  87. Tomlinson A, Drikas M, Brookes JD (2016) The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination. Water Res 102:229–240. https://doi.org/10.1016/j.watres.2016.06.024

    CAS  Article  PubMed  Google Scholar 

  88. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  89. Tranvik LJ, Downing JA, Cotner JB et al (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298

    CAS  Article  Google Scholar 

  90. USEPA (1979) Method 415.1.0, organic carbon, total by combustion or oxidation. EPA-600/4-79-020, Environmental Monitoring Systems Laboratory, ORD, USEPA, Cincinnati, Ohio 45268

  91. USEPA (2009) Method 415.3, Revision 1.2, Determination of total organic carbon and specific UV absorbance at 254 nm in source water and drinking water. EPA-600/R-09/122, National Exposure Research Laboratory, Office of Research and Development, USEPA, Cincinnati, Ohio 45268

  92. Ward CP, Cory RM (2020) Assessing the prevalence, products, and pathways of dissolved organic matter partial photo-oxidation in arctic surface waters. Environ Sci Process Impacts 22:1214–1223. https://doi.org/10.1039/c9em00504h

    CAS  Article  PubMed  Google Scholar 

  93. Watras CJ, Hanson PC, Stacy TL, Morrison KM, Mather J, Hu YH, Milewski M (2011) A temperature compensation method for CDOM fluorescence sensors in freshwater. Limnol Oceanogr Methods 9:296–301. https://doi.org/10.4319/lom.2011.9.296

    CAS  Article  Google Scholar 

  94. Watras CJ, Morrison KA, Crawford JT, McDonald CP, Oliver SK, Hanson PC (2015) Diel cycles in the fluorescence of dissolved organic matter in dystrophic Wisconsin seepage lakes: implications for carbon turnover. Limnol Oceanogr 60:482–496. https://doi.org/10.1002/lno.10026

    Article  Google Scholar 

  95. Watras CJ, Morrison KA, Lottig NR, Kratz TK (2016a) Comparing the diel cycles of dissolved organic matter fluorescence in a clear-water and two dark-water Wisconsin lakes: potential insights into lake metabolism. Can J Fish Aquat Sci 73:65–75. https://doi.org/10.1139/cjfas-2015-0172

    CAS  Article  Google Scholar 

  96. Watras CJ, Morrison KA, Rubsam JL (2016b) Effect of DOC on evaporation from small Wisconsin lakes. J Hydrol 540:162–175. https://doi.org/10.1016/j.jhydrol.2016.06.002

    CAS  Article  Google Scholar 

  97. Weyhenmeyer GA, Karlsson J (2009) Nonlinear response of dissolved organic carbon concentrations in boreal lakes to increasing temperatures. Limnol Oceanogr 54:2513–2519. https://doi.org/10.4319/lo.2009.54.6_part_2.2513

    CAS  Article  Google Scholar 

  98. Williams CJ, Yamashita Y, Wilson HF, Jaffé R, Xenopoulos MA (2010) Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol Oceanogr 55:1159–1171. https://doi.org/10.4319/lo.2010.55.3.1159

    CAS  Article  Google Scholar 

  99. Williamson CE, Overholt EP, Pilla RM, Leach TH, Brentrup JA, Knoll LB, Mette EM, Moeller RE (2015) Ecological consequences of long-term browning in lakes. Sci Rep. https://doi.org/10.1038/srep18666

    Article  PubMed  PubMed Central  Google Scholar 

  100. Xylem (2019) EXO user manual. Yellow Spring, Ohio. https://www.ysi.com/File%20Library/Documents/Manuals/EXO-User-Manual-Web.pdf

  101. Zhang Y, van Dijk MA, Liu M, Zhu G, Qin B (2009) The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence. Water Res 43:4685–4697. https://doi.org/10.1016/j.watres.2009.07.024

    CAS  Article  PubMed  Google Scholar 

  102. Zhang J, Hudson J, Neal R et al (2010) Long-term patterns of dissolved organic carbon in lakes across eastern Canada: evidence of a pronounced climate effect. Limnol Oceanogr 55:30–42. https://doi.org/10.4319/lo.2010.55.1.0030

    CAS  Article  Google Scholar 

  103. Zwart JA, Sebestyen SD, Solomon CT, Jones SE (2017) The influence of hydrologic residence time on lake carbon cycling dynamics following extreme precipitation events. Ecosystems 20:1000–1014. https://doi.org/10.1007/s10021-016-0088-6

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Western Virginia Water Authority for their long-term support and access to field sites. Bethany Bookout provided critical sensor maintenance and Ryan McClure helped with fieldwork and modeling. Barbara Niederlehner and Heather Wander helped analyze DOC samples. The Virginia Tech Reservoir group and FCR carbon team provided the collaborative foundation for this study. We would also like to thank two anonymous Reviewers and Associate Editor Dr. Yu-Ping Chin for their constructive feedback, which substantially improved the manuscript. We gratefully acknowledge our funding sources, including the National Science Foundation (NSF) grants DEB-1753639, DEB-1753657, CNS-1737424, DEB-1926050, DBI-1933016, and DBI-1933102, a Schoenholtz Fellowship from the Virginia Water Resources Research Center, the Virginia Tech Global Change Center, and Fralin Life Science Institute at Virginia Tech.

Funding

This study was financially supported by the National Science Foundation (NSF) grants DEB-1753639, DEB-1753657, CNS-1737424, DEB-1926050, DBI-1933102, and DBI-1933016, a Schoenholtz Fellowship from the Virginia Water Resources Research Center, the Virginia Tech Global Change Center, and Fralin Life Science Institute at Virginia Tech.

Author information

Affiliations

Authors

Contributions

DWH, MEL, and CCC conceived the research project. DWH led data curation, data analyses, and writing with significant help and support from AGH, MEL, and CCC. AGH and MEL guided the project's progress with DWH. AGH provided critical biogeochemical expertise and CCC developed wavelet transform analysis. MEL and WMW provided help with analytical chemistry analysis and WMW helped with sensor data QA/QC and time series modeling. PCH provided expertise on modeling and organic matter cycling. All co-authors provided feedback on writing and approved the final version of this manuscript.

Corresponding author

Correspondence to Dexter W. Howard.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 641 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Howard, D.W., Hounshell, A.G., Lofton, M.E. et al. Variability in fluorescent dissolved organic matter concentrations across diel to seasonal time scales is driven by water temperature and meteorology in a eutrophic reservoir. Aquat Sci 83, 30 (2021). https://doi.org/10.1007/s00027-021-00784-w

Download citation

Keywords

  • Continuous wavelet transforms
  • Dissolved organic carbon
  • Fluorescent dissolved organic matter
  • High frequency sensors
  • Reservoir limnology
  • Time series modeling