Understanding the factors controlling biofilm as an autochthonous resource in shaded oligotrophic neotropical streams

Abstract

Light and nutrients are bottom-up factors in controlling biofilm in tropical shaded oligotrophic streams. Regardless of the predominant resource source (autochthonous or allochthonous), greater availability of light and nutrients favors the development and, later, grazing (top-down factor) of the biofilm, with reflections on the trophic structure of these ecosystems. The increase in primary productivity in lotic ecosystems may reflect the fractionation of dissolved inorganic carbon (DIC) by the algal cells contained in the biofilm. A global meta-analysis showed that an increase in primary productivity leads to enrichment of the carbon isotope ratios of biofilm. The objective of this study was to evaluate how top-down (grazing) and bottom-up (light and nutrient) factors act on the biofilm and whether algal biomass determines the isotopic fractionation of δ13C in headwaters of Central Brazil. The density of grazing macroinvertebrates was controlled with electric pulses. Electrified (excluding grazers) and non-electrified grids were implemented in open and shaded areas in each stream. The biofilm ash-free dry mass (AFDM) doubled in nutrient-enriched streams. The effect of grazing on the biomass of the biofilm was significant for the nutrient-enriched streams, with a 50% reduction in the AFDM. Additionally, shading influenced chlorophyll-a even in pristine streams, as the concentration increased approximately ten-fold under open canopy conditions. There was a significant negative relationship between chlorophyll-a concentrations and δ13C values. Our study provides evidence that biofilm biomass increases as a result of changes in bottom-up controls. Top-down control significantly reduced biofilm in the food web based on autochthonous organic matter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Altman N, Krzywinski M (2015) Points of significance: split plot design. Nat Methods 12:165–166. https://doi.org/10.1038/nmeth.3293

    CAS  Article  PubMed  Google Scholar 

  2. Barton´ K (2020) MuMIn: multi‐model inference. R package version 1.43.17, p 75

  3. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  4. Bechtold HA, Rosi EJ, Warren DR, Keeton WS (2017) Forest age influences in-stream ecosystem processes in northeastern US. Ecosystems 20:1058–1071. https://doi.org/10.1007/s10021-016-0093-9

    CAS  Article  Google Scholar 

  5. Böttger K (1970) Die Ernährungsweise der Wassermilben (Hydrachnellae, Acari), Feeding of water-mites (Hydrachnellae, Acari). Int Rev ges Hydrobiol 55:895–912

    Article  Google Scholar 

  6. Braccia A, Eggert SL, King N (2014) Macroinvertebrate colonization dynamics on artificial substrates along an algal resource gradient. Hydrobiologia 727:1–18. https://doi.org/10.1007/s10750-013-1779-z

    CAS  Article  Google Scholar 

  7. Brett MT, Bunn SE, Chandra S et al (2017) How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshw Biol 62:833–853

    CAS  Article  Google Scholar 

  8. Bumpers PM, Rosemond AD, Maerz JC, Benstead JP (2017) Experimental nutrient enrichment of forest streams increases energy flow to predators along greener food-web pathways. Freshw Biol 62:1794–1805. https://doi.org/10.1111/fwb.12992

    CAS  Article  Google Scholar 

  9. Campeau A, Wallin MB, Giesler R et al (2017) Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-09049-9

    CAS  Article  Google Scholar 

  10. Campos JEG, Dardenne MA, Freitas-Silva FH, Martins-Ferreira MAC (2013) Geologia do grupo paranoá na porção externa da faixa Brasília. Brazilian J Geol 43:461–476. https://doi.org/10.5327/Z2317-48892013000300004

    Article  Google Scholar 

  11. Cochero J, Nicolosi Gelis MM, Sathicq MB, Gómez N (2018) Biofilm early stage development in two nutrient-rich streams with different urban impacts. River Res Appl 34:755–764. https://doi.org/10.1002/rra.3290

    Article  Google Scholar 

  12. Cremona F, Planas D, Lucotte M (2010) Influence of functional feeding groups and spatiotemporal variables on the δ15N signature of littoral macroinvertebrates. Hydrobiologia 647:51–61. https://doi.org/10.1007/s10750-009-9798-5

    CAS  Article  Google Scholar 

  13. da Reis AS, Albrecht MP, Bunn SE (2020) Food web pathways for fish communities in small tropical streams. Freshw Biol 65:893–907. https://doi.org/10.1111/fwb.13471

    CAS  Article  Google Scholar 

  14. Davids K, Sabatino A Di, Gerecke R et al (2007) Acari: Hydrachnidia. In: Bartsch I, Davids C, Deichse l R (eds) Chelicerata: Araneae, Acari I. Süßwasserfauna von Mitteleuropa 7/2–1. Spektrum Akademischer, Heidelberg, pp 241–333

  15. DeNicola M, Hoagland KD, Roemer SC (1992) Influences of canopy cover on spectral irradiance and periphyton assemblages in a prairie stream. J N Am Benthol Soc 11:391–404. https://doi.org/10.2307/1467560

    Article  Google Scholar 

  16. Di Sabatino A, Smit H, Gerecke R et al (2008) Global diversity of water mites (Acari, Hydrachnidia; Arachnida) in freshwater. Hydrobiologia 595:303–315. https://doi.org/10.1007/s10750-007-9025-1

    Article  Google Scholar 

  17. Dobson AJ, Barnett AG (2018) An introduction to generalized linear models. CRC Press, New York

    Google Scholar 

  18. Dominguez E, Hubbard MD, Peters WL (1992) Clave para ninfas y adultos de las familias y géneros de Ephemeroptera (Insecta) sudamericanos. Biol Acuat 1992:16

    Google Scholar 

  19. Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet Earth. Science 333:301–306. https://doi.org/10.1126/science.1205106

    CAS  Article  PubMed  Google Scholar 

  20. Feijó-Lima R, Mcleay SM, Silva-Junior EF et al (2018) Quantitatively describing the downstream effects of an abrupt land cover transition: buffering effects of a forest remnant on a stream impacted by cattle grazing. Inl Waters 8:294–311. https://doi.org/10.1080/20442041.2018.1457855

    Article  Google Scholar 

  21. Ferreira MJN, Froehlich CG (1992) Estudo da fauna de Ephemeroptera (Insecta) do córrego do Pedregulho (Pedregulho, SP, Brasil) com aspectos da biologia de Thraulodes schlingeri Traver & Edmunds, 1967. Rev Brasil Entomol Curitiba 36(3):541–548

    Google Scholar 

  22. Finlay JC (2001) Stable-carbon-isotope ratios of river biota: Implications for energy flow in lotic food webs. Ecology 82:1052–1064. https://doi.org/10.1890/0012-9658(2001)082[1052:SCIROR]2.0.CO;2

    Article  Google Scholar 

  23. Finlay JC, Kendal C (2007) Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell Publishing, Hoboken, pp 283–333

    Google Scholar 

  24. Finlay JC, Power ME, Cabana G (1999) Effects of water velocity on algal carbon isotope rations: implications river food web studies. Limnol Oceanogr 44:1198–1203

    Article  Google Scholar 

  25. Fonseca BM, de Mendonça-Galvão L (2014) Pristine aquatic systems in a Long Term Ecological Research (LTER) site of the Brazilian Cerrado. Environ Monit Assess 186:8683–8695. https://doi.org/10.1007/s10661-014-4035-8

    CAS  Article  PubMed  Google Scholar 

  26. Fonseca BM, De Mendonça-Galvão L, Padovesi-Fonseca C et al (2014) Nutrient baselines of Cerrado low-order streams: comparing natural and impacted sites in Central Brazil. Environ Monit Assess 186:19–33. https://doi.org/10.1007/s10661-013-3351-8

    CAS  Article  PubMed  Google Scholar 

  27. Forstmeier W, Schielzeth H (2011) Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav Ecol Sociobiol 65:47–55. https://doi.org/10.1007/s00265-010-1038-5

    Article  PubMed  Google Scholar 

  28. Frazer GW, Canham CD, Lertzman KP (1999) Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Copyright. Gap Light Anal. (GLA), Version 2.0 1, pp 1–40

  29. Garcia EA, Townsend SA, Douglas MM (2015) Context dependency of top-down and bottom-up effects in a Northern Australian tropical river. Freshw Sci 34:679–690. https://doi.org/10.1086/681106

    Article  Google Scholar 

  30. Goncalves JJF, França JS, Callisto M (2006) Dynamics of allochthonous organic matter in a tropical brazilian headstream. Braz Arch Biol Technol 49:967–973. https://doi.org/10.1590/S1516-89132006000700014

    Article  Google Scholar 

  31. Gruner DS, Smith JE, Seabloom EW et al (2008) A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol Lett 11:740–755. https://doi.org/10.1111/j.1461-0248.2008.01192.x

    Article  PubMed  Google Scholar 

  32. Gücker B, Boëchat IG, Giani A (2009) Impacts of agricultural land use on ecosystem structure and whole-stream metabolism of tropical Cerrado streams. Freshw Biol 54:2069–2085. https://doi.org/10.1111/j.1365-2427.2008.02069.x

    CAS  Article  Google Scholar 

  33. Hart DD (1990) Resource limitation in a stream community: phosphorus enrichment effects on periphyton and grazers. In: David D, Hart and Christopher T Robinson Reviewed work. Ecological Society of America Stable. http://www.jstor.o. America (NY), vol 71, pp 1494–1502

  34. Hill WR, Middleton RG (2006) Changes in carbon stable isotope ratios during periphyton development. Limnol Ocean 51:2360–2369

    CAS  Article  Google Scholar 

  35. Hill WR, Ryon MG, Schilling EM (1995) Light limitation in a stream ecosystem: responses by primary producers and consumers. Ecology 76:1297–1309. https://doi.org/10.2307/1940936

    Article  Google Scholar 

  36. Hunke P, Mueller EN, Schröder B, Zeilhofer P (2015) The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8:1154–1180. https://doi.org/10.1002/eco.1573

    Article  Google Scholar 

  37. Ishikawa NF, Doi H, Finlay JC (2012) Global meta-analysis for controlling factors on carbon stable isotope ratios of lotic periphyton. Oecologia 170:541–549. https://doi.org/10.1007/s00442-012-2308-x

    Article  PubMed  Google Scholar 

  38. Johnson MS, Lehmann J, Riha SJ et al (2008) CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett 35:1–5. https://doi.org/10.1029/2008GL034619

    CAS  Article  Google Scholar 

  39. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  40. Laws EA, Popp BN, Bidigare RR et al (1995) Dependence of phytoplankton carbon isotopic composition on growth rate and CO2aq: theoretical considerations and experimental results. Geochim Cosmochim Acta 59:1131–1138. https://doi.org/10.1016/0016-7037(95)00030-4

    CAS  Article  Google Scholar 

  41. Lourenço-Amorim C, Neres-Lima V, Moulton TP et al (2014) Control of periphyton standing crop in an Atlantic Forest stream: the relative roles of nutrients, grazers and predators. Freshw Biol 59:2365–2373. https://doi.org/10.1111/fwb.12441

    CAS  Article  Google Scholar 

  42. Mangiafico S (2020) Functions to Support Extension Education Program Evaluation [R package rcompanion version 2.3.26]

  43. Marker AF, Nush EA, Rai H, Riemann B (1980) The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendations. Arch Fur Hydrobiol 14:91–106

    CAS  Google Scholar 

  44. Mccutchan JH, Lewis WM, Kendall C, Mcgrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 2:378–390

    Article  Google Scholar 

  45. Merritt RW, Cummins KW, Berg MB (2008) An introduction to the aquatic insects of North America, 4th edn. Kendall/Hunt Publishing Company, Dubuque

    Google Scholar 

  46. Mosisch TD, Bunn SE, Davies PM (2001) The relative importance of shading and nutrients on algal production in subtropical streams. Freshw Biol 46:1269–1278. https://doi.org/10.1046/j.1365-2427.2001.00747.x

    Article  Google Scholar 

  47. Moulton TP, Lourenço-Amorim C, Sasada-Sato CY et al (2015) Dynamics of algal production and ephemeropteran grazing of periphyton in a tropical stream. Int Rev Hydrobiol 100:61–68. https://doi.org/10.1002/iroh.201401769

    Article  Google Scholar 

  48. Mugnai R, Nessimian JL, Baptista DF (2010) Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro, 1o. Technical Books, Rio de Janeiro

  49. Neres-Lima V, Brito EF, Krsulović FAM et al (2016) High importance of autochthonous basal food source for the food web of a Brazilian tropical stream regardless of shading. Int Rev Hydrobiol 101:132–142. https://doi.org/10.1002/iroh.201601851

    Article  Google Scholar 

  50. Proctor H, Pritchard G (1989) Neglected predators : Water mites (Acari : Parasitengona : Hydrachnellae) in freshwater communities. J N Am Benthol Soc 8:100–111

    Article  Google Scholar 

  51. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  52. R Core Team (2020) A language and environment for statistical computing

  53. Reatto A, Martins ES (2005) Classes de solo em relação aos controles da paisagem no bioma Cerrado. In: Scariot A, Sousa-Silva JC, Felfili JM (eds) Cerrado: ecologia, biodiversidade e conservação. Ministério do Meio Ambiente, pp 49–59

  54. Ribeiro JF, Walter BMT (2001) As matas de galeria no contexto do bioma Cerrado. In: Ribeiro JF, Fonseca CEL, Sousa Silva JC (eds) Cerrado: caracterização e recuperação de Matas de Galeria. Embrapa Cerrados, Planaltina, pp 29–47

    Google Scholar 

  55. Rooney N, McCann KS (2012) Integrating food web diversity, structure and stability. Trends Ecol Evol 27:40–45. https://doi.org/10.1016/j.tree.2011.09.001

    Article  PubMed  Google Scholar 

  56. Rosas KG, Colón-Gaud C, Ramírez A (2020) Trophic basis of production in tropical headwater streams, Puerto Rico: an assessment of the importance of allochthonous resources in fueling food webs. Hydrobiologia 847:1961–1975. https://doi.org/10.1007/s10750-020-04224-y

    CAS  Article  Google Scholar 

  57. Saltarelli WA, Dodds WK, Tromboni F et al (2018) Variation of stream metabolism along a tropical environmental gradient. J Limnol 77:359–371. https://doi.org/10.4081/jlimnol.2018.1717

    Article  Google Scholar 

  58. Sartory DP, Grobbelaar JU (1984) Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114:177–187. https://doi.org/10.1007/BF00031869

    CAS  Article  Google Scholar 

  59. Sharkey TD, Berry JA (1985) Carbon isotope fractionatino of algae as influenced by an inducible CO2 concentration mechanism. Am Soc plan Physiol 1985:389–401

    Google Scholar 

  60. Singer GA, Battin TJ (2007) Anthropogenic subsidies alter stream consumer-resource stoichiometry, biodiversity, and food chains. Ecol Appl 17:376–389. https://doi.org/10.1890/06-0229

    Article  PubMed  Google Scholar 

  61. Slavik K, Peterson BJ, Deegan LA et al (2004) Long-term responses of the Kuparuk river ecosystem to phosphorus fertilization. Ecology 85:939–954. https://doi.org/10.1890/02-4039

    Article  Google Scholar 

  62. Sokal RR, Rohlf FJ (2011) Biometry: The principles and practice of statistics in biological research. W.H. Freeman & Company, New York

    Google Scholar 

  63. Spence J, Telmer K (2005) The role of sulfur in chemical weathering and atmospheric CO2 fluxes: evidence from major ions, δ13CDIC, and δ34SSO4 in rivers of the Canadian Cordillera. Geochim Cosmochim Acta 69:5441–5458. https://doi.org/10.1016/j.gca.2005.07.011

    CAS  Article  Google Scholar 

  64. Stegen JC, Black AR (2011) Trophic ecology of an aquatic mite (Piona carnea) preying on Daphnia pulex: effects of predator density, nutrient supply and a second predator (Chaoborus americanus). Hydrobiologia 668:171–182. https://doi.org/10.1007/s10750-010-0454-x

    CAS  Article  Google Scholar 

  65. Strassburg BBN, Brooks T, Feltran-barbieri R et al (2017) Moment of truth for the Cerrado hotspot. Nat Publ Gr 1:1–3. https://doi.org/10.1038/s41559-017-0099

    Article  Google Scholar 

  66. Sturt MM, Jansen MAK, Harrison SSC (2011) Invertebrate grazing and riparian shade as controllers of nuisance algae in a eutrophic river. Freshw Biol 56:2580–2593. https://doi.org/10.1111/j.1365-2427.2011.02684.x

    Article  Google Scholar 

  67. Telmer K, Veizer J (1999) Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives. Chem Geol 159:61–86. https://doi.org/10.1016/S0009-2541(99)00034-0

    CAS  Article  Google Scholar 

  68. Tromboni F, Lourenço-Amorim C, Neres-Lima V et al (2019) Conversion of tropical forests to agriculture alters the accrual, stoichiometry, nutrient limitation, and taxonomic composition of stream periphyton. Int Rev Hydrobiol 104:116–126. https://doi.org/10.1002/iroh.201801963

    CAS  Article  Google Scholar 

  69. Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395–1404

    Article  Google Scholar 

  70. Vannote RL, Minshall GW, Cummins KW et al (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  71. Warren DR, Keeton WS, Kiffney PM et al (2016) Changing forests-changing streams: Riparian forest stand development and ecosystem function in temperate headwaters. Ecosphere 7:1–19. https://doi.org/10.1002/ecs2.1435

    Article  Google Scholar 

  72. Więcek M, Martin P, Gąbka M (2013) Distribution patterns and environmental correlates of water mites (Hydrachnidia, Acari) in peatland microhabitats. Exp Appl Acarol 61:147–160. https://doi.org/10.1007/s10493-013-9692-8

    Article  PubMed  PubMed Central  Google Scholar 

  73. Worm B, Duffy JE (2003) Biodiversity, productivity and stability in real food webs. Trends Ecol Evol 18:628–632. https://doi.org/10.1016/j.tree.2003.09.003

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Environmental Isotope Studies group (www.eisunb.com) from the University of Brasilia for its assistance in the field and with laboratory analyzes.

Funding

The first author received a grant from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through the Graduate Program in Ecology of the University of Brasilia (Process: 140269/2017-7). This research was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-PELD: “Cerrados do Planalto Central: Estrutura, dinâmica e processos ecológicos”, process: 441581/2016-1) and the Rufford Foundation's Small Grants Program (Application Identification: 19719-1).

Author information

Affiliations

Authors

Contributions

TBK designed the study and was responsible for developing the work. TBK was responsible for the statistical processing of the data. AA assisted in the collection and chemical analysis. TBK, LMG, GBN, AA, LFSwere responsible for writing the manuscript. GBN and TBK were responsible for overseeing the development of work and review the versions of the manuscript.

Corresponding author

Correspondence to Tiago Borges Kisaka.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethics approval

We are also grateful for the permission (nº 56144) by the Chico Mendes Institute for Biodiversity Conservation (ICMBio) in the development of the experiment. We are also grateful for the permission by the Jardim Botânico de Brasilia and the Fazenda Água Limpa of the University of Brasilia in the implementation of the experiment. The registration number for the National System for the Management of Genetic Heritage and Associated Traditional Knowledge (SisGen) is A018ECD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kisaka, T.B., de Almeida, A., de Mendonça-Galvão, L. et al. Understanding the factors controlling biofilm as an autochthonous resource in shaded oligotrophic neotropical streams. Aquat Sci 83, 24 (2021). https://doi.org/10.1007/s00027-021-00781-z

Download citation

Keywords

  • Stable isotopes
  • Invertebrates
  • Biofilm
  • Nutrient enrichment
  • Top–down
  • Bottom–up
  • Shaded streams