Skip to main content

Advertisement

Log in

Response of the aquatic invertebrate community to the eradication of an exotic invasive fish 30 years after its introduction into an Iberian alpine lake

  • Research article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

In Lake Grande de Peñalara, an originally fishless small high mountain lake in the Central Iberian Peninsula, brook trout (Salvelinus fontinalis) was introduced in the 1970s, and then eradicated 30 years later using gillnets. In this study, we investigated the time-course and changes in macroinvertebrates and zooplankton communities, before and after the eradication, by studying their richness and several biological and ecological traits of macroinvertebrates. Macroinvertebrates richness increased from 13 taxa coexisting with fish, up to a maximum of 27 taxa after the eradication. Rare groups usually affected by fish predation, e.g. swimmers in surface and open waters, showed high dispersal and recolonization capabilities, while those with burrowing, interstitial or crawler habits maintained their presence, and even with the presence of fish given their advantage of hiding from being directly sighted by fish. Taxa with affinities for rare habitats within the lake (e.g. macrophyte beds) occasionally appeared 4–6 years after eradication. In contrast, zooplankton assemblage did not significantly change in richness in the 10 years after eradication. No new species of cladocerans or copepods appeared after fish removal, but 4 new rotifer taxa appeared and 5 disappeared. This was apparently more related to a change in water quality or trophic status as a consequence of the fish removal than to the direct effect of fish removal on rotifers. Zooplankters were significantly smaller, on average, before fish eradication rather than later, indicating that the community responded to the change in predation pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguilera X, Declerck S, De Meester L, Maldonado M, Ollevier F (2006) Tropical high Andes lakes: a limnological survey and an assessment of exotic rainbow trout (Oncorhynchus mykiss). Limnologica 36:258–268

    Google Scholar 

  • Appelberg M, Berger HM, Hesthagen T, Kleiven E, Kurkilahti M, Raitaniemi J, Rask M (1995) Development and intercalibration of methods of Nordic freshwater fish monitoring. Water Air Soil Pollut 85:883–888

    CAS  Google Scholar 

  • Arce E, Archaimbault V, Mondy CP, Usseglio-Polatera P (2014) Recovery dynamics in invertebrate communities following water-quality improvement: taxonomy- vs trait-based assessment. Freshw Sci 33:1060–1073

    Google Scholar 

  • Aşan Z, Senturk S (2012) An application of fuzzy coding in multiple correspondence analysis for transforming data from continuous to categorical. J Mult Valued Logic Soft Comput 18:355–370

    Google Scholar 

  • Berzins B, Pejler B (1989) Rotifer occurrence and trophic degree. Hydrobiologia 182:171–180

    CAS  Google Scholar 

  • Bitušík P, Svitok M, Novikmec M, Trnková K, Hamerlík L (2017) Biological recovery of acidified alpine lakes may be delayed by the dispersal limitation of aquatic insect adults. Hydrobiologia 790:287–298

    Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    PubMed  Google Scholar 

  • Boavida MJ, Gliwicz M (1996) Limnological and biological characteristics of the alpine lakes of Portugal. Limnetica 12:39–45

    Google Scholar 

  • Bosch J, Bielby J, Martin-Beyer B, Rincón P, Correa-Araneda F, Boyero L (2019) Eradication of introduced fish allows successful recovery of a stream-dwelling amphibian. PLoS ONE 14(4):e0216204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford DF, Cooper SD, Jenkins TM Jr, Kratz K, Sarnelle O, Brown AD (1998) Influences of natural acidity and introduced fish on faunal assemblages in California alpine lakes. Can J Fish Aquat Sci 55:2478–2491

    Google Scholar 

  • Braña F, Frechilla L, Oriazola G (1996) Effects of introduced fish on amphibians assemblages in mountian lakes of Northern Spain. Herpetol J 6:145–148

    Google Scholar 

  • Brand C, Miserendino ML (2014) Biological traits and community patterns of Trichoptera at two Patagonian headwater streams affected by volcanic ash deposition. Zool Stud 53:1

    CAS  Google Scholar 

  • Brendonck L, De Meester L (2003) Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491:65–84

    Google Scholar 

  • Brunet M, Jones PD, Sigro J, Saladie O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, Lopez D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res. https://doi.org/10.1029/2006JD008249

    Article  Google Scholar 

  • Carlisle DM, Hawkins CP (1998) Relationships between invertebrate assemblage structure, 2 Trout species, and habitat structure in Utah mountain lakes. J N Am Benthol Soc 17:286–300

    Google Scholar 

  • Catalan J, Grazia Barbieri M, Bartumeus F, Bitusik P, Botev I, Brancelj A, Cogalniceanu D, Manca M, Marchetto A, Ognjanova-Rumenova N et al (2009) Ecological thresholds in European alpine lakes. Freshw Biol 54:2494–2517

    CAS  Google Scholar 

  • Cavalli L, Chappaz R, Bouchard P, Brun G (1997) Food availability and growth of the brook trout, Salvelinus fontinalis (Mitchill), in a French Alpine lake. Fish Manag Ecol 4:167–177

    Google Scholar 

  • Cavalli L, Miquelis A, Chappaz R (2001) Combined effects of environmental factors and predator-prey interactions on zooplancton assembalges in five high alpine lakes. Hydrobiologia 455:127–135

    Google Scholar 

  • Chessel D, Dufour AB, Thioulouse J (2004) The ade4 Package-I: onetable methods. R News 4:5–10

    Google Scholar 

  • Chevenet F, Dolédec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309

    Google Scholar 

  • De Mendoza G, Catalan J (2010) Lake macroinvertebrates and the altitudinal environmental gradient in the Pyrenees. Hydrobiologia 648:51

    Google Scholar 

  • De Mendoza G, Rico E, Catalan J (2012) Predation by introduced fish constrains the thermal distribution of aquatic Coleoptera in mountain lakes. Freshw Biol 57:803–814

    Google Scholar 

  • Desrosiers M, Usseglio-Polatera P, Archaimbault V, Larras F, Méthot G, Pinel-Alloul B (2019) Assessing anthropogenic pressure in the St. Lawrence River using traits of benthic macroinvertebrates. Sci Total Environ 649:233–246

    CAS  PubMed  Google Scholar 

  • Doadrio I (2001) Atlas y Libro Rojo de los Peces Continentales de España. Dirección General de Conservación de la Naturaleza-Consejo Superior de Investigaciones Científicas. Madrid. https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-nacionales/inventario-especies-terrestres/inventario-nacional-de-biodiversidad/ieet_peces_atlas.aspx

  • Dolédec S, Chevenet F (1994) Fuzzy correspondence analysis. Sci Direct 158:1–20

    Google Scholar 

  • Donald DB, Stewart R, Mayhood DW (1994) Coexistence of fish and large Hesperodiaptomus species (Crustacea: Calanoida) in subalpine and alpine lakes. Can J Zool 72:259–261

    Google Scholar 

  • Donald DB, Vinebrooke RD, Anderson RS, Syrgiannis J, Graham MD (2001) Recovery of zooplankton assemblages in mountain lakes from the effects of introduced sport fish. Can J Fish Aquat Sci 58:1822–1830

    Google Scholar 

  • Donaldson LA, Cooke SJ (2016) The effectiveness of non-native fish eradication techniques in freshwater ecosystems: a systematic review protocol. Environ Evid 5:12

    Google Scholar 

  • Eggers DM (1982) Planktivore preference by prey size. Ecology 63:381–390

    Google Scholar 

  • Ejsmont-Karabin J (2012) The usefulness of zooplankton as lake ecosystem indicators: rotifers trophic state index. Pol J Ecol 60:339–350

    Google Scholar 

  • Elvira B, Almodóvar A (2001) Freshwater fish introductions in Spain: facts and figures at the beginning of the 21st century. J Fish Biol 59:323–331

    Google Scholar 

  • Evans RA (1989) Responses of limnetic insect populations of two acidic, fishless lakes to liming and brook trout (Salvelinus fontinalis) introductions. Can J Fish Aquat Sci 46:342–351

    Google Scholar 

  • Ficke AD, Peterson DP, Janowsky B (2009) Brook trout (Salvelinus fontinalis): a Technical Conservation Assessment. USDA Forest Service, Rocky Mountain Region. https://www.fs.fed.us/r2/projects/scp/assessments/brooktrout.pdf. Accessed 26 May 2019

  • Gacia E, Buchaca T, Bernal-Mendoza N, Sabás I, Ballesteros E, Ventura M (2018) Non-native minnows threaten quillwort populations in high mountain shallow lakes. Front Plant Sci 9:329. https://doi.org/10.3389/fpls.2018.00329

    Article  PubMed  PubMed Central  Google Scholar 

  • Gannon JE, Stemberger RS (1978) Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans Am Microsc Soc 97:16–35

    Google Scholar 

  • García-Berthou E, Almeida D, Benejam L, Magellan K, Bae MJ, Casals F, Merciai R (2015) Impacto ecológico de los peces continentales introducidos en la Península Ibérica. Ecosistemas 24:84–89

    Google Scholar 

  • Gilinsky E (1984) The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65:455–468

    Google Scholar 

  • Gliwicz ZM (1980) Extinction of planktonic cladoceran species from alpine lakes stocked with fish planktivores. In: Horie S (ed) Paleolimnology of Lake Biwa and the Japanese Pleistocene, 8. Kyoto University, Kyoto, pp 3–22

    Google Scholar 

  • Gliwicz ZM, Rowan M (1984) Survival of Cyclops abyssorum tatricus (Copepoda, Crustacea) in alpine lakes stocked with planktivorous fish. Limnol Oceanogr 29:1290–1299

    Google Scholar 

  • Gore P (2000) Cluster Analysis. In: Tinsley H, Brown S (eds) Handbook of applied multivariate statistics and mathematical modeling. Academic Press, New York, pp 297–321

    Google Scholar 

  • Granados I, Toro M, Rubio-Romero A (2006) Laguna Grande de Peñalara, 10 años de seguimiento limnológico. Comunidad de Madrid, Consejería de Medio Ambiente y Ordenación del Territorio, Dirección General del Medio Natural, Madrid

  • Hamerlík L, Svitok M, Novikmec M, Očadlík M, Bitušík P (2014) Local, among-site, and regional diversity patterns of benthic macroinvertebrates in high altitude waterbodies: do ponds differ from lakes? Hydrobiologia 723:41–52

    Google Scholar 

  • Hawkins CP, Norris RH, Gerritsen J, Hughes RM, Jackson SK, Johnson RK, Stevenson RJ (2000) Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations. J N Am Benthol Soc 19:541–556

    Google Scholar 

  • IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp

  • Karas N (1997) Brook trout. Lyons and Burford, New York

    Google Scholar 

  • Knapp RA, Matthews KR (1998) Eradication of nonnative fish by gill netting from a small mountain lake in California. Restor Ecol 6:207–213

    Google Scholar 

  • Knapp RA, Sarnelle O (2008) Recovery after local extinction: factors affecting re-establishment of alpine lake zooplankton. Ecol Appl 18:1850–1859

    PubMed  Google Scholar 

  • Knapp RA, Matthews KR, Sarnelle O (2001) Resistance and resilience of alpine lake fauna to fish introductions. Ecol Monogr 71:401–421

    Google Scholar 

  • Knapp RA, Hawkins CP, Ladau J, McClory JG (2005) Fauna of Yosemite national park lakes has low resistance but high resilience to fish introductions. Ecol Appl 15:835–847

    Google Scholar 

  • Knapp RA, Boiano DM, Vredenburg VT (2007) Removal of nonnative fish results in population expansion of a declining amphibian (mountain yellow-legged frog, Rana muscosa). Biol Cons 135:11–20

    Google Scholar 

  • Lafrancois BM, Carlisle DM, Nydick KR, Johnson BM, Baron JS (2003) Environmental characteristics and benthic invertebrate assemblages in Colorado mountain lakes. Western North American Naturalist 63:137–154

    Google Scholar 

  • Leavitt PR, Schindler DE, Paul AJ, Hardie AK, Schindler DW (1994) Fossil pigment records of Phytoplankton in Trout-stocked Alpine Lakes. Can J Fish Aquat Sci 51:2411–2423

    CAS  Google Scholar 

  • Leppä M, Hämäläinen H, Karjalainen J (2003) The response of benthic macroinvertebrates to whole-lake biomanipulation. Hydrobiologia 498:97–105

    Google Scholar 

  • Lewis WM Jr (1983) A revised classification of lakes based on mixing. Can J Fish Aquat Sci 40:1779–1787

    Google Scholar 

  • Louette G, Meester LD (2005) High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology 86:353–359

    Google Scholar 

  • Maceda-Veiga A, López R, Green AJ (2017) Dramatic impact of alien carp Cyprinus carpio on globally threatened diving ducks and other waterbirds in Mediterranean shallow lakes. Biol Cons 212:74–85

    Google Scholar 

  • Magnea U, Sciascia R, Paparella F, Tiberti R, Provenzale A (2013) A model for high-altitude alpine lake ecosystems and the effect of introduced fish. Ecol Model 251:211–220

    CAS  Google Scholar 

  • McNaught AS, Schindler DW, Parker BR, Paul AJ, Anderson RS, Donald DB, Agbeti M (1999) Restoration of the food web of an alpine lake following fish stocking. Limnol Oceanogr 44:127–136

    Google Scholar 

  • Miracle R (1978) Composición específica de las comunidades zooplanctónicas de 153 lagos de los Pirineos y su interés biogeográfico. Oecologia aquatica 3:167–191

    Google Scholar 

  • Miró A, Ventura M (2015) Evidence of exotic trout mediated minnow invasion in Pyrenean high mountain lakes. Biol Invasions 17:791–803

    Google Scholar 

  • Müller F, Bergmann M, Dannowski R, Dippner JW, Gnauck A, Haase P, Jochimsen MC, Kasprzak P, Kröncke I, Kümmerlin R, Küster M, Lischeid G, Meesenburg H, Merz C, Millat G, Müller J, Padisák J, Schimming CG, Schubert H, Schult M, Selmeczy G, Shatwell T, Stoll S, Schwabe M, Soltwedel T, Straile D, Theuerkauf M (2016) Assessing resilience in long-term ecological data sets. Ecol Ind 65:10–43

    Google Scholar 

  • Nelson JS, Paetz MJ (1992) The Fishes of Alberta, 2nd edn. The University of Alberta Press, Edmonton, Alberta

    Google Scholar 

  • Novikmec M, Svitok M, Kočický Š, Bitušik P (2013) Surface water temperature and ice cover of Tatra mountains lakes depend on altitude, topographic shading, and bathymetry. Arct Antarct Alp Res 45:77–87

    Google Scholar 

  • Oksanen JF, Blanchet, FG, Friendly, M, Kindt, R, Legendre P, McGlinn D, Minchin PR, O’Hara B, Simpson GL, Solymos P, Stevens H, Szoecs E, Wagner H (2017) 'vegan'. Community Ecology Package. R. Package Version 2.4–2

  • Pardo CE, Del Campo PC (2007) Combinación de métodos factoriales y de análisis de conglomerados en R: el paquete FactoClass. Revista Colombiana de Estadística 30:231–245

    Google Scholar 

  • Parker BR, Wilhelm FM, Schindler DW (1996) Recovery of Hesperodiaptomus arcticus populations from diapausing eggs following elimination by stocked salmonids. Can J Zool 74:1292–1297

    Google Scholar 

  • Parker BR, Schindler DW, Donald DB, Anderson RS (2001) The effects of stocking and removal of a nonnative salmonid on theplankton of an Alpine lake. Ecosystems 4:334–345

    Google Scholar 

  • Pastorino P, Polazzo F, Bertoli M, Santi M, Righetti M, Pizzul E, Prearo M (2018) Consequences of fish introductions in fishless Alpine lakes: preliminary notes from a sanitary point of view. Turk J Fish Aquat Sci. https://doi.org/10.4194/1303-2712-v20_01_01

    Article  Google Scholar 

  • Power M, Power G, Caron F, Doucett RR, Guiguer KR (2002) Growth and dietary niche in Salvelinus fontinalis as revealed by stable isotope analysis. Environ Biol Fishes 64:75–85

    Google Scholar 

  • Resh VH, Beche LA, McElravy EP (2005) How common are rare taxa in long-term benthic macroinvertebrate surveys? J N Am Benthol Soc 24:976–989

    Google Scholar 

  • Rolla M, Biffoni G, Brighenti S, Iacobuzio R, Liautaud K, Pasquaretta C, Tiberti R (2018) Predation by introduced fish can magnify the terrestrial arthropod subsidies in mountain lakes. Can J Fish Aquat Sci 75:1453–1464

    Google Scholar 

  • RStudio Team (2015) RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL https://www.rstudio.com/

  • Sánchez J, Cobo F, González MA (2007) Biología y la alimentación del salvelino, Salvelinus fontinalis (Mitchill, 1814), en cinco lagunas glaciares de la Sierra de Gredos (Ávila, España). Nova Acta Cientifica Compostelana (Bioloxía) 16:129–144

    Google Scholar 

  • Sarnelle O, Knapp RA (2004) Zooplankton recovery after fish removal: limitations of the egg bank. Limnol Oceanogr 49:1382–1392

    Google Scholar 

  • Schabetsberger R, Luger MS, Drozdowski G, Jagsch A (2009) Only the small survive: monitoring long-term changes in the zooplankton community of an Alpine lake after fish introduction. Biol Invasions 11:1335–1345

    Google Scholar 

  • Schilling EG, Lofton CS, Huryn AD (2009) Macroinvertebrates as indicators of fish absence in naturally fishless lakes. Freshw Biol 54:181–202

    Google Scholar 

  • Schindler DW, Parker BR (2002) Biological pollutants: alien fishes in mountain lakes. Water Air Soil Pollut Focus 2:379–397

    Google Scholar 

  • Schindler DE, Knapp RA, Leavitt PR (2001) Alteration of nutrient cycles and algal production resulting from fish introductions into mountain lakes. Ecosystems 4:308–321

    CAS  Google Scholar 

  • Scott WB, Scott MG (1988) Atlantic fishes of Canada. Can Bull Fish Aqua Sci 219:731

    Google Scholar 

  • Sienkiewicz E, Gąsiorowski M (2016) The effect of fish stocking on mountain lake plankton communities identified using palaeobiological analyses of bottom sediment cores. J Paleolimnol 55:129–150

    Google Scholar 

  • Spears BM, Futter MN, Jeppesen E, Huser BJ, Ives S, Davidson TA, Adrian R, Angeler DG, Burthe SJ, Carvalho L, Daunt F, Gsell AS, Hessen DO, Janssen ABG, Mackay EB, May L, Moorhouse H, Olsen S, Søndergaard M, Woods H, Thackeray SJ (2017) Ecological resilience in lakes and the conjunction fallacy. Nat Ecol Evol 1:1616–1624

    PubMed  Google Scholar 

  • Stenson JAE (1982) Fish impact on rotifer community structure. Hydrobiologia 87:57–64

    Google Scholar 

  • Stenson JAE (1983) Changes in the relative abundance of Polyarthra vulgaris and P. dolichoptera, following the elimination of fish. Hydrobiologia 104:269–273

    Google Scholar 

  • Stoch F, Vagaggini D, Margaritora FG (2019) Macroecological and spatial patterns in the distribution of cladocerans in Alpine lakes. Limnetica 38:119–136

    Google Scholar 

  • Symons CC, Shurin JB (2016) Climate constrains lake community and ecosystem responses to introduced predators. Proc R Soc B Biol Sci 283:20160825

    Google Scholar 

  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2000) Invertébrés d'eau douce. Systématique, biologie, écologie. CNRS Editions, Paris

  • Tiberti R (2017) Can satellite ponds buffer the impact of introduced fish on newts in a mountain pond network? Aquat Conserv Mar Freshw Ecosyst 28:457–465

    Google Scholar 

  • Tiberti R, von Hardenberg A, Bogliani G (2014) Ecological impact of introduced fish in high altitude lakes: a case of study from the European Alps. Hydrobiologia 724:1–19

    CAS  Google Scholar 

  • Tiberti R, Brighenti S, Canedoli C, Iacobuzio R, Pasquini G, Rolla M (2016) The diet of introduced brook trout (Salvelinus fontinalis; Mitchill, 1814) in an alpine area and a literature review on its feeding ecology. J Limnol 75:488–507

    Google Scholar 

  • Tiberti R, Bogliani G, Brighenti S, Iacobuzio R, Liautaud K, Rolla M, von Hardanberg A, Bassano B (2018) Recovery of high mountain Alpine lakes after the eradication of introduced brook trout Salvelinus fontinalis using non-chemical methods. Biol Invasions 21:875–894

    Google Scholar 

  • Tonolli L, Tonolli V (1951) Ossevacioni sulla biologia ed ecologia di 170 popolamenti zooplanctonici di laghi italiani di alta quota. Memorie dell’Istituto Italiano di Idrobiología “Dottore Marco Marchi” 6:53–136

  • Toro M (2007) Las lagunas del Macizo de Peñalara (Sierra de Guadarrama): de los primeros naturalistas y científicos a los problemas de conservación a comienzos del siglo XXI. Boletín de la Real Sociedad Española de Historia Natural, Sección Biológica 102:127–148

    Google Scholar 

  • Toro M, Granados I (2001) Las lagunas del Parque Regional de la Sierra de Gredos. Monografías de la Red de Espacios Naturales de Castilla y León, Serie Técnica: Junta de Castilla y León, Valladolid

  • Toro M, Granados I (2002) Restoration of a small high mountain lake after recent tourist impact: the importance of limnological monitoring and palaeolimnology. Water Air Soil Pollut Focus 2:295–310

    CAS  Google Scholar 

  • Toro M, Granados I, Robles S, Montes C (2006) High mountain lakes of the Central Range (Iberian Peninsula): Regional limnology and environmental changes. Limnetica 25:217–252

    Google Scholar 

  • Torres-Esquivias JA, Arenas González RM, Fernández Delgado C (2009) La malvasía cabeciblanca (Oxyura leucocephala) de nuevo en la Laguna de Zóñar. Oxyura Revista sobre las Zonas Húmedas 12:41–48

    Google Scholar 

  • Usseglio-Polatera P, Bournaud M, Richoux P, Tachet H (2000) Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshw Biol 43:175–205

    Google Scholar 

  • Usseglio-Polatera P, Philippe R, Bournaud M, Tachet H (2001) A functional classification of benthic macroinvertebrates based on biological and ecological traits: application to river condition assessment and stream management. Archiv fuer Hydrobiol Suppl 139:53–83

    Google Scholar 

  • Velasco JL, Álvarez M, García Sánchez-Colomer M (2005) Comunidades planctónicas de los lagos de montaña de Neila (Burgos, España). Ecología 19:75–94

    Google Scholar 

  • Ventura M, Tiberti R, Buchaca T, Buñay D, Sabás I, Miró A (2017) Why should we preserve fishless high mountain lakes? In: Catalan J, Ninot JM, Añiz M (eds) High mountain conservation in a changing world. Springer-Verlag, Cham, pp 181–205

    Google Scholar 

  • Vicente-Serrano SM, Rodríguez-Camino E, Domínguez-Castro F, El Kenawy A, Azorín-Molina C (2017) An updated review on recent trends in observational surface atmospheric variables and their extremes over Spain. Geogr Res Lett 43:209–232

    Google Scholar 

  • Villéger S, Ramos J, Flores D, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol Appl 20:1512–1522

    PubMed  Google Scholar 

  • Ward JH (1963) Hierarchical groupings to optimize an objective function. J Am Stat Assoc 58:236–244

    Google Scholar 

  • Wattiez C (1981) Biomasse du zooplancton et productivity des cladoceres d'eaux de degre trophique different. Ann Limnol 17:219–236

    Google Scholar 

  • Winder M, Monaghan MT, Spaak P (2001) Have human impacts changed alpine zooplankton diversity over the past 100 years? Artic Antarct Alpine Res 33:467–475

    Google Scholar 

  • Winder M, Bürgi HR, Spaak P (2003) Mechanisms regulating zooplankton populations in a high-mountain lake. Freshw Biol 48:795–809

    Google Scholar 

  • Wissinger SA, McIntosh AR, Greig HS (2006) Impacts of introduced brown and rainbow trout on benthic invertebrate communities in shallow New Zealand lakes. Freshw Biol 51:2009–2028

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Park of Sierra de Guadarrama (Regional Government of Madrid). Work by A.C. is currently funded by the project CLIMAWET (CGL2015-69557-R). The authors are very grateful for the help given in the taxonomic determinations by Andrés Mellado (macroinvertebrates) and Juan José Aldasoro, Manuel García Sánchez-Colomer and Santiago Robles (zooplankton), and for the assistance provided in the statistical analysis by Andrés Mellado, Jorge R. Sánchez, and Ignacio González.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Toro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toro, M., Granados, I., Rubio, Á. et al. Response of the aquatic invertebrate community to the eradication of an exotic invasive fish 30 years after its introduction into an Iberian alpine lake. Aquat Sci 82, 55 (2020). https://doi.org/10.1007/s00027-020-00728-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-020-00728-w

Keywords

Navigation