Macroinvertebrate diversity and rarity in non-glacial Alpine streams

Abstract

Alpine landscapes are being transformed through the rapid recession of glaciers, resulting in the development of numerous non-glacial headwater streams inhabited by a diverse assemblage of macroinvertebrates. We examined spatial patterns in biodiversity and rarity of macroinvertebrates in 41 non-glacial streams from five glacierized catchments in the Swiss Alps undergoing rapid glacial recession over the last decades. Water physico-chemistry and food resources (periphyton, benthic organic matter) varied widely among streams within each catchment, while no significant differences occurred among catchments. Variability in community composition was similar among streams within each catchment but differed among catchments, reflecting differences in catchment-scale species pools due to biogeographical context and season. Overall, 101 taxa from ca 33,000 individuals collected were identified in the streams with 7–33 taxa found in individual streams. Some 64% of the taxa comprised less than 5% of the total abundances at the streams (rare in abundance) with 78% of the taxa being represented by less than 5% of the most common taxon (Baetis sp.), whereas 47% of the taxa were found in less than 10% of the streams (rare in distribution). No taxon was found at all sites (maximum presence at 85% of the sites), while 15% of the taxa were found at 50% of the sites or more. However, analyzing the rank-abundance distribution showed that rarity was less prevalent than previously shown in other ecosystems. The results indicated that community assembly of alpine headwater streams is a complex interaction between environmental properties (habitat filtering), habitat stability coupled with dispersal (source sink dynamics), and time since deglaciation (island biogeography). Integrating these processes is essential towards understanding ongoing colonization events in headwater streams of alpine catchments as glaciers continue to recede.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allan JD, Castillo MM (2009) Stream ecology: structure and function of running waters. Springer, Dordrecht

    Google Scholar 

  2. Altermatt F, Seymour M, Martinez N (2013) River network properties shape alpha-diversity and community similarity patterns of aquatic insect communities across major drainage basins. J Biogeogr 92:859–870

    Google Scholar 

  3. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  4. Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    PubMed  Google Scholar 

  5. Arscott DB, Jackson JK, Kratzer EB (2006) Role of rarity and taxonomic resolution in a regional and spatial analysis of stream macroinvertebrates. J N Am Benthol Soc 25:977–997

    Google Scholar 

  6. Bährmann R (ed) (2011) Bestimmung wirbelloser Tiere, 6th edn. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  7. Balint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, Theissinger K, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nat Clim Change 1:313–318

    Google Scholar 

  8. Besemer K, Singer G, Quince C, Bertuzzo E, Sloan W, Battin TJ (2013) Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proc R Soc B 280:20131760

    PubMed  Google Scholar 

  9. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconson. Ecol Monogr 27:325–349

    Google Scholar 

  10. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide no. 10. Quaternary Research Association, London

  11. Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Google Scholar 

  12. Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Ann Rev Ecol Syst 27:597–623

    Google Scholar 

  13. Brown LE, Hannah DM, Milner AM (2009) ARISE: a classification tool for Alpine River and Stream Ecosystems. Freshw Biol 54:1357–1369

    Google Scholar 

  14. Büchi L, Vuilleumier S (2014) Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am Nat 183:612–624

    PubMed  Google Scholar 

  15. Burga CA (1999) Vegetation development on the glacier forefield Morteratsch (Switzerland). Appl Veg Sci 2:17–24

    Google Scholar 

  16. Campbell Grant EH, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol Lett 10:165–175

    PubMed  Google Scholar 

  17. Cauvy-Fraunié S (2014) Hydroecology of invertebrate communities in equatorial glacier-fed streams. PhD thesis, Pierre Marie Curie University (Paris 6), France

  18. Cauvy-Fraunié S, Espinosa R, Andino P, Jacobsen D, Dangles O (2015) Invertebrate metacommunity structure and dynamics in an Andean glacial stream network facing climate change. PLoS One 10:e0136793

    PubMed  PubMed Central  Google Scholar 

  19. Cauvy-Fraunié S, Andino P, Espinosa R, Calvez R, Jacobsen D, Dangles O (2016) Ecological responses to experimental glacier-runoff reduction in alpine rivers. Nat Commun 7:12025

    PubMed  PubMed Central  Google Scholar 

  20. Clitherow LR, Carrivick JL, Brown LE (2013) Food web structure in a harsh glacier-fed river. PLoS One 8:1–11

    Google Scholar 

  21. Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182

    PubMed  Google Scholar 

  22. Cribari-Neto F, Zeileis A (2010) Beta Regression in R. J Stat Softw 34:1–24

    Google Scholar 

  23. Datry T, Larned ST, Tockner K (2014) Intermittent rivers: a challenge for freshwater ecology. Bioscience 64:229–235

    Google Scholar 

  24. Docherty CL, Hannah DM, Riis T, Lund M, Abermann J, Milner AM (2018) Spatio-temporal dynamics of macroinvertebrate communities in northeast Greenlandic snowmelt streams. Ecohydrology 11:1–13

    Google Scholar 

  25. Finn DS, Räsänen K, Robinson CT (2010) Physical and biological changes to a lengthening stream gradient following a decade of rapid glacial recession. Glob Change Biol 16:3314–3326

    Google Scholar 

  26. Finn DS, Khamis K, Milner AM (2013) Loss of small glaciers will diminish beta diversity in Pyrenean streams at two levels of biological organization. Glob Ecol Biogeogr 22:40–51

    Google Scholar 

  27. Finn DS, Zamora-Munoz C, Murria C, Sainz-Bariaiin M, Alba-Tercedor J (2014) Evidence from recently deglaciated mountain ranges that Baetis alpinus (Ephemeroptera) could lose siginfiant genetic diversity as alpine glaciers dissappear. Freshw Sci 33:207–216

    Google Scholar 

  28. Finn DS, Encalada AC, Hampel H (2016) Genetic isolation among mountains but not between stream types in a tropical high-altitude mayfly. Freshw Biol 61:702–714

    Google Scholar 

  29. Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12:42–58

    Google Scholar 

  30. Fureder L (1999) High alpine streams: cold habitats for insect larvae. In: Margesin R, Schinner F (eds) Cold adapted organisms. Ecology, physiology, enzymology and molecular biology. Springer-Verlag, Berlin, pp 181–196

    Google Scholar 

  31. Füreder L, Schutz C, Wallinger M, Burger R (2001) Physico-chemistry and aquatic insects of a glacier-fed and spring-fed alpine stream. Freshw Biol 46:1673–1690

    Google Scholar 

  32. Gaston KJ (1994) Rarity. Chapman and Hall, London

    Google Scholar 

  33. Gaston KJ, Fuller RA (2007) Commonness, population depletion and conservation biology. Trends Ecol Evol 23:14–19

    PubMed  Google Scholar 

  34. Gaston KJ, Blackburn TM, Greenwood JD, Gregory RD, Quinn RM, Lawton JH (2000) Abundance-occupancy relationships. J Appl Ecol 37:39–59

    Google Scholar 

  35. Gletscherberichte (1881–2009) “Die Gletscher der Schweizer Alpen”, Jahrbücher der Expertenkommission für Kryosphärenmessnetze der Akademie der Naturwissenschaften Schweiz (SCNAT) herausgegegeben seit 1964 durch die Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW) der ETH Zürich. No. 1–126, (http://glaciology.ethz.ch/swiss-glaciers/)

  36. Hieber M, Robinson CT, Uehlinger U, Ward JV (2005) A comparison of benthic macroinvertebrate assemblages among different types of alpine streams. Freshw Biol 50:2087–2100

    Google Scholar 

  37. Huss M, Farinotti D, Bauder A, Funk M (2008) Modeling runoff from highly glaciaeriezed alpine drainage basins in a changing climate. Hydrol Process 22:3888–3902

    Google Scholar 

  38. Ilyashuk B, Ilyashuk E, Makarchenko EA, Heiri O (2010) Midges of the genus Pseudodiamesa Goetghebuer (Diptera, Chironomidae): current knowledge and palaeoecological perspective. J Paleolimnol 44:667–676

    Google Scholar 

  39. IPCC (2014) Climate change 2014: synthesis report. Cambridge University Press, Cambridge

    Google Scholar 

  40. Isaak DJ, Young MK, Luce CH, Hostetler SW, Wenger SJ, Peterson EE, Ver Hoef JM, Groce MC, Horan DL, Nagel DE (2016) Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity. PNAS 113:4374–4379

    CAS  PubMed  Google Scholar 

  41. Jacobsen D, Milner AM, Brown LE, Dangles O (2012) Biodiversity under threat in glacier-fed river systems. Nat Clim Change 2:361–364

    Google Scholar 

  42. Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439

    PubMed  Google Scholar 

  43. Kendall MG (1938) A new measure of rank correlation. Biometrika 30:81–93

    Google Scholar 

  44. Koleff P, Gaston K, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382

    Google Scholar 

  45. Kunin WE, Gaston KJ (1993) The biology of rarity: patterns, causes and consequences. TREE 8:298–301

    CAS  PubMed  Google Scholar 

  46. Langton PH (1991) A key to pupal exuviae of West Palaearctic Chironomidae. Privately published by P.H. Langton, 5 Kylebeg Av., Mountsandel, Cleraine, Co. Londonderry, Northern Ireland

  47. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Google Scholar 

  48. Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier Publishing, Amsterdam

    Google Scholar 

  49. Leitao RP, Zuanon J, Villeger S, Williams SE, Baraloto C, Fortunel C, Mendonca FP, Mouillot D (2016) Rare species contribute disproportionately to the functional structure of species assemblages. Proc R Soc B 283:20160084

    PubMed  Google Scholar 

  50. Lencioni V, Marziali L, Rossaro B (2007) I Ditteri Chironomidi: morfologia, tassonomia, ecologia, fisiologia e zoogeografia. Quaderni del Museo Tridentino di Scienze Naturali 1

  51. Lencioni V, Marziali L, Rossaro B (2011) Diversity and distribution of chironomids (Diptera, Chironomidae) in pristine Alpine and pre-Alpine springs. J Limnol 70:106–121

    Google Scholar 

  52. Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2004) Contribution of rarity and commonness to patterns of species richness. Ecol Lett 7:81–87

    Google Scholar 

  53. Lester SE, Ruttenberg BI, Gaines SD, Kinlan BP (2007) The relationship between dispersal ability and geographic range size. Ecol Lett 10:745–758

    PubMed  Google Scholar 

  54. Leys M, Keller I, Räsänen K, Gattolliat JL, Robinson CT (2016) Distribution and population genetic variation of cryptic species of the Alpine mayfly Baetis alpinus (Ephemeroptera: Baetidae) in the Central Alps. BMC Evol Biol 16:77

    PubMed  PubMed Central  Google Scholar 

  55. Logares R, Mangot J-F, Massana R (2016) Rarity in aquatic microbes: placing protists on the map. Res Microbiol 166:831–841

    Google Scholar 

  56. Lubini V, Knispel S, Vinçon G (2012) Fauna Helvetica 27: Die Steinfliegen der Schweiz

  57. Lyons KG, Schwartz MW (2001) Rare species loss alters ecosystem functon—invasion resistance. Ecol Lett 4:358–365

    Google Scholar 

  58. MacArthur RH, Wilson EO (1967) The theory of Island biogeography. Princeton University Press, Princeton

    Google Scholar 

  59. Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature 422:714–716

    CAS  PubMed  Google Scholar 

  60. Malard F, Uehlinger U, Zah R, Tockner K (2006) Floodpulse and riverscape dynamics in a braided glacial river. Ecology 87:704–716

    PubMed  Google Scholar 

  61. Milner AM, Petts GE (1994) Glacial rivers: physical habitat and ecology. Freshw Biol 32:295–307

    Google Scholar 

  62. Milner AM, Brittain JE, Castella E, Petts GE (2001) Trends of macroinvertebrate community strcuture in glacial-fed rivers in relation to environmental conditions: a synthesis. Freshw Biol 46:1833–1847

    Google Scholar 

  63. Milner AM, Brown LE, Hannah DM (2009) Hydroecological response of river systems to shrinking glaciers. Hydrol Process 23:62–77

    CAS  Google Scholar 

  64. Mykrä H, Heino J (2017) Decreased habitat specialization in macroinvertebrate assemblages in anthropogenically disturbed streams. Ecol Complex 31:181–188

    Google Scholar 

  65. Ohmura A (2012) Enhanced temperature variability in high altitude climate change. Theoret Appl Climatol 110:499–508

    Google Scholar 

  66. Oksanen JF, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Gavin LS, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. R package version 2.4-6. https://CRAN.R-project.org/package=vegan

  67. Pauls SU, Nowak C, Balint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and speices. Mol Ecol 22:925–946

    PubMed  Google Scholar 

  68. Rabinowitz D (1981) Seven forms of rarity. In: Synge H, Chichester J (eds) Biological aspects of rare plant conservation. John Wiley and Sons, New York, pp 205–217

    Google Scholar 

  69. Resh VH, Beche LA, McElravy EP (2005) How common are rare taxa in long-term benthic macroinvertebrate surveys? J N Am Benthol Soc 24:976–989

    Google Scholar 

  70. Robinson CT, Matthaei S (2007) Hydrological heterogeniety of an alpine stream/lake network in Switzerland. Hydrol Process 21:3146–3154

    CAS  Google Scholar 

  71. Robinson CT, Burgherr B, Malard F, Tockner K, Uehlinger U (2003) In: Ward JV and Uehlinger U (eds.) Ecology of a Glacial Flood Plain. Kluwer Academic Publishers, The Netherlands, pp 259–272

  72. Robinson CT, Kawecka B, Fureder L, Peter A (2010) Biodiversity of flora and fauna in Alpine waters. In: Bundi U (ed.) Alpine Waters. Handbook Environmental Chemistry 6, pp 193–223

  73. Robinson CT, Thompson C, Freestone M (2014) Ecosystem development of streams lengthened by rapid glacial recession. Fundam Appl Limnol 185:235–246

    Google Scholar 

  74. Robinson CT, Tonolla D, Imhof B, Vukelic R, Uehlinger U (2015) Flow intermittency, physico-chemistry and function of headwater streams in an Alpine glacial catchment. Aquat Sci 78:327–341

    Google Scholar 

  75. Robinson CT, Thompson C, Lods-Crozet B, Alther R (2016) Chironomidae diversity in high elevation streams in the Swiss Alps. Fundam Appl Limnol 188:201–213

    Google Scholar 

  76. Saether OA (1995) Metriocnemus van der Wulp: seven new species, revision of species, and new records (Diptera: Chironomidae). Ann Lomnol 31:35–64

    Google Scholar 

  77. Sarremejane R, Mykrä H, Huttunen KL, Mustonen KR, Marttila H, Paavola R, Sippel K, Veijalainen N, Muotka T (2018) Climate-driven hydrological variability determines inter-annual changes in stream invertebrate community assembly. Oikos 127:1586–1595

    Google Scholar 

  78. Schmid PE (1993) A key to the larval Chironomidae and their instars from Austrian Danube region streams and rivers. Part 1: Diamesinae, Prodiamesinae and Orthocladiinae. Wasser und Abwasser 3/93:1–513

    Google Scholar 

  79. Serra-Tosio B (1989) Révision des espèces oust-paléarctiques et néarctiques de Boreoheptagyia Brundin avec des clés pour les larves, les nymphes et les imagos. Spixiana 11:133–173

    Google Scholar 

  80. Sgarbi LF, Melo AS (2018) You don’t belong here: explaining the excess of rare species in terms of habitat, space and time. Oikos 127:497–506

    Google Scholar 

  81. Shama LNS, Kubow KB, Jokela J, Robinson CT (2011) Bottlenecks drive temporal and spatial genetic responses in alpine caddisfly metapopulations. BMC Evol Biol 11:278–293

    PubMed  PubMed Central  Google Scholar 

  82. Smith MD, Knapp AK (2003) Dominant species maintain ecosystem function with non-random species loss. Ecol Lett 6:509–517

    Google Scholar 

  83. Sorg A, Bolch T, Stoffel M, Solomina O, Beniston M (2012) Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat Clim Change 2:725–731

    Google Scholar 

  84. Southwood TRE (1977) Habitat, the templet for ecological strategies. J Anim Ecol 46:336–365

    Google Scholar 

  85. Southwood TRE (1988) Tactics, strategies and templets. Oikos 52:3–18

    Google Scholar 

  86. Stucki P (2010) Methoden zur Untersuchung und Beurteilung der Fliessgewässer. Makrozoobenthos Stufe F. Bundesamt für Umwelt (BAFU), Bern, p 61

  87. Studemann D, Landolt P, Sartori M, Hefti D, Tomka I (1992) Insecta Helvetica Fauna: Ephemeroptera. (W. Sauter, Ed.)

  88. Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2010) Invertébrés d’eau douce. Systématique, biologie, écologie. CNRS Éditions, Paris

  89. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  90. Thompson R, Townsend C (2006) A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. J Anim Ecol 75:476–484

    PubMed  Google Scholar 

  91. Tockner K, Malard F, Burgherr P, Robinson CT, Uehlinger U, Zah R, Ward JV (1997) Characteristics of channel types in a glacial floodplain system (Val Roseg, Switzerland). Archiv Hydrobiol 140:433–463

    Google Scholar 

  92. Tonkin JD, Arimoro FO, Haase P (2016a) Exploring stream communities in a tropical biodiversity hotspot: biodiversity, regional occupancy, niche characteristics and environmental correlates. Biodivers Conserv 25:975–993

    Google Scholar 

  93. Tonkin JD, Stoll S, Jähnig SC, Haase P (2016b) Contrasting metacommunity structure and beta diversity in an aquatic-floodplain system. Oikos 125:686–697

    Google Scholar 

  94. Tonkin JD, Heino J, Altermatt F (2018) Metacommunities in river networks: the importance of network structure and connectivity on patterns and processes. Freshw Biol 63:1–5

    Google Scholar 

  95. Uehlinger U (1991) Spatial and temporal variability of the periphyton biomass in a prealpine river (Necker, Switzerland). Archiv Hydrobiol 123:219–237

    Google Scholar 

  96. Ward JV (1994) Ecology of alpine streams. Freshw Biol 32:277–294

    Google Scholar 

  97. Waringer J, Graf W (2011) Atlas of Central European Trichoptera Larvae. Austria, Vienna

    Google Scholar 

  98. Whittaker RH (1956) Vegetation of the Great Smoky Mountains. Ecol Monogr 26:1–80

    Google Scholar 

  99. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Google Scholar 

  100. Wiederholm T (1983) Chironomidae of the Holarctic region. Keys and Diagnoses. Part 1. Larvae. Entomol Scand 19:1–449

    Google Scholar 

  101. Wiederholm T (1986) Chironomidae of the Holarctic region. Keys and diagnoses. Part 2. Pupae. Entomol Scand 28:1–4821983

    Google Scholar 

  102. Wilson MJ, McTammany ME (2016) Spatial scale and dispersal influence metacommunity dynamics of benthic invertebrates in a large river. Freshw Sci 35:738–747

    Google Scholar 

  103. Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

Download references

Acknowledgements

We thank the Aua lab at Eawag for chemical analysis of water samples. We thank C. Jolidon, M. Leys, L. Sgier and D. Tanno for field assistance. We thank two anonymous reviewers for their extensive feedback and helpful comments that strengthened the analysis and improved the manuscript. The study was funded through a grant from the Swiss National Science Foundation (SNF# 135523).

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. T. Robinson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 318 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alther, R., Thompson, C., Lods-Crozet, B. et al. Macroinvertebrate diversity and rarity in non-glacial Alpine streams. Aquat Sci 81, 42 (2019). https://doi.org/10.1007/s00027-019-0642-3

Download citation

Keywords

  • Aquatic macroinvertebrates
  • Dispersal
  • Stream headwaters
  • Species abundance distribution
  • Community ecology
  • Rarity