Skip to main content

Advertisement

Log in

Dissolved carbon, greenhouse gases, and δ13C dynamics in four estuaries across a land use gradient

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Land use is a well known driver of nutrient dynamics in estuaries, however less is known about how land use may influence the coastal carbon (C) cycle. Here, we report dissolved carbon concentrations, δ13C isotopic signatures, and water–air CO2 and CH4 fluxes for four Australian estuaries with contrasting catchment land use ranging from 9 to 72% natural. Water samples were collected during dry and wet hydrologic extremes. Dissolved organic carbon (DOC) concentrations were highest and total dissolved nitrogen and dissolved phosphorous were lowest in the least impacted estuary (Pine Creek). The DOC δ13C signature was enriched for the estuary with 91% urban-agricultural land use (Coffs Creek), implying a shift in the source of DOC along the land use gradient. Low DOC and high nutrient availability decreased CO2 fluxes to the atmosphere in the impacted systems during both wet and dry conditions, and increased CH4 concentrations and fluxes during the wet conditions. Variability of CO2 and CH4 were influenced by multiple drivers including hydrologic forcing, dissolved nutrients, as well as shifts in the nature of allochthonous versus autochthonous sources within each estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abril G, Etcheber H, Borges AV, Frankignoulle M (2000) Excess atmospheric carbon dioxide transported by rivers into the Scheldt estuary. C R Acad Sci II A 330:761–768

    CAS  Google Scholar 

  • Abril G, Nogueira M, Etcheber H, Cabeçadas G, Lemaire E, Brogueira MJ (2002) Behaviour of organic carbon in nine contrasting European estuaries. Estuar Coast Shelf Sci 54:241–262

    CAS  Google Scholar 

  • Abril G, Commarieu M, Guérin F (2007) Enhanced methane oxidation in an estuarine turbidity maximum. Limnol Oceanogr 52:470–475

    CAS  Google Scholar 

  • Akhand A, Chanda A, Manna S et al (2016) A comparison of CO2 dynamics and air-water fluxes in a river-dominated estuary and a mangrove-dominated marine estuary. Geophys Res Lett 43:11,726–711,735

    CAS  Google Scholar 

  • Alshboul Z, Encinas-Fernandéz J, Hofmann H, Lorke A (2016) Export of dissolved methane and carbon dioxide with effluents from municipal wastewater treatment plants. Environ Sci Technol 50:5555–5563

    CAS  PubMed  Google Scholar 

  • Australian Bureau of Statistics (ABS) (2017) Coffs Harbour (C) (LGA) (11800). http://www.censusdata.abs.gov.au/. Accessed 21 Dec 2017

  • Barbosa AB, Chícharo MA (2011) Hydrology and biota interactions as driving forces for ecosystem Functioning. In: Treatise on estuarine and coastal science, Chap. 10. Elsevier, Oxford

    Google Scholar 

  • Barker JF, Fritz P (1981) Carbon isotope fractionation during microbial methane oxidation. Nature 293:289–291

    CAS  Google Scholar 

  • Bauer JE, Cai WJ, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PA (2013) The changing carbon cycle of the coastal ocean. Nature 504:61–70

    CAS  PubMed  Google Scholar 

  • Bender MM (1968) Mass spectrometric studies of carbon 13 variations in corn and other grasses. Radiocarbon 10:468–472

    Google Scholar 

  • Bird MI, Pousai P (1997) Variations of δ13C in the surface soil organic carbon pool. Global Biogeochem Cycles 11:313–322

    CAS  Google Scholar 

  • Bird MI, Fyfe WS, Pinheio-Dick D, Chivas AR (1992) Carbon isotope indicators of catchment vegetation in the Brazilian Amazon. Global Biogeochem Cycles 6:293–306

    CAS  Google Scholar 

  • Borges AV, Abril G (2011) Carbon dioxide and methane dynamics in estuaries. In: Wolanski E, McLusky D (eds) Treatise on Estuarine and Coastal Science. Academic Press, Waltham, pp 119–161

    Google Scholar 

  • Borges AV, Gypens N (2010) Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification. Limnol Oceanogr 55:346–353

    CAS  Google Scholar 

  • Borges AV, Schiettecatte L-S, Abril G, Delille B, Gazeau F (2006) Carbon dioxide in European coastal waters. Estuar Coast Shelf Sci 70(3):375–387

    CAS  Google Scholar 

  • Borges AV, Darchambeau F, Lambert T et al (2018a) Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium). Sci Total Environ 610:342–355

    PubMed  Google Scholar 

  • Borges AV, Abril G, Bouillon S (2018b) Carbon dynamics and CO2 and CH4 outgassing in the Mekong delta. Biogeosciences 15:1093–1114

    Google Scholar 

  • Borowski WS, Paul CK, Ussler W (1997) Carbon cycling within the upper methanogenic zone of continental rise sediments: an example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits. Mar Chem 57:299–311

    CAS  Google Scholar 

  • Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98

    PubMed  Google Scholar 

  • Bouchez J, Lajeunesse E, Gaillardet J, France-Lanord C, Dutra-Maia P, Maurice L (2010) Turbulent mixing in the Amazon River: the isotopic memory of confluences. Earth Planet Sci Lett 290:37–43

    CAS  Google Scholar 

  • Bouillon S, Borges AV, Castañeda-Moya E et al (2008a) Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochem Cycles 22:10–22

    Google Scholar 

  • Bouillon S, Connolly R, Lee RM (2008b) Organic matter exchange and cycling in mangrove ecosystems: recent insights from stable isotope studies. J Sea Res 59:44–58

    CAS  Google Scholar 

  • Boynton WR, Garber JH, Summers R, Kemp WM (1995) Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18:285–314

    CAS  Google Scholar 

  • Boynton WR, Hagy JD, Cornwell JC et al (2008) Nutrient budgets and management actions in the Patuxent River estuary, Maryland. Estuaries Coasts 31(4):623–651

    CAS  Google Scholar 

  • Brooks JR, Barnard HR, Coulombe R, McDonnell JJ (2010) Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat Geosci 3:100–104

    Google Scholar 

  • Bu N-S, Qu J-F, Zhao H et al (2015) Effects of semi-lunar tidal cycling on soil CO2 and CH4 emissions: a case study in the Yangtze River estuary, China. Wetl Ecol Manag 23(4):727–736

    CAS  Google Scholar 

  • Bureau of Meteorology (BoM) (2017a) Climate Data Online. Australian Government Bureau of Meteorology. http://www.bom.gov.au/climate/averages/tables/cw_059010.shtml. Accessed 20 June 2017

  • Bureau of Meteorology (BoM) (2017b) Daily Rainfall Coffs Harbour Airport. http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=136&p_display_type=dailyDataFile&p_startYear=2016&p_c=-699992572&p_stn_num=059151. Accessed 20 June 2017

  • Bureau of Meteorology (BoM) (2017c) Climate Data Online. Australian Government Bureau of Meteorology. http://www.bom.gov.au/climate/current/soi2.shtml. Accessed 20 Oct 2017

  • Burgos M, Sierra A, Ortega T, Forja JM (2015) Anthropogenic effects on greenhouse gas (CH4 and N2O) emissions in the Guadalete river estuary (SW Spain). Sci Total Environ 503–504:179–189

    PubMed  Google Scholar 

  • Burgos M, Sierra A, Ortega T, Forja JM (2018) Carbon dioxide and methane dynamics in three coastal systems of Cadiz Bay (SW Spain). Estuaries Coasts 41(4):1069–1088

    CAS  Google Scholar 

  • Cai WJ (2011) Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu Rev Mar Sci 3:123–145

    Google Scholar 

  • Call M, Maher DT, Santos IR et al (2015) Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochim Cosmochim Acta 150:211–225

    CAS  Google Scholar 

  • Campbell E, Knoop W, Bate G (1991) A comparison of phytoplankton biomass and primary production in three eastern Cape estuaries, South Africa. S Afr J Sci 87:259–264

    Google Scholar 

  • CHCC (2003) Bonville and Pine Creeks Estuary Processes Study. Coffs Harbour City Council in association with Patterson Britton & Partners Pty. W.S. Rooney & Associates, Australia

    Google Scholar 

  • Chen CTA, Huang TH, Fu YH, Baim Y, He X (2012) Strong sources of CO2 in upper estuaries become sinks of CO2 in large river plumes. Cur Opin Environ Sustain 4:179–185

    Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    CAS  Google Scholar 

  • Conrad SR, Santos IR, Brown DR, Sanders LM, van Santen ML, Sanders CJ (2017) Mangrove sediments reveal records of development during the previous century (Coffs Creek estuary, Australia). Mar Pollut Bull 122(1–2):441–445

    CAS  PubMed  Google Scholar 

  • Cotovicz LC, Knoppers BA, Brandini N, Costa Santos SJ, Abril G (2015) A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeosciences 12:6125–6146

    CAS  Google Scholar 

  • Cotovicz LC, Knoppers BA, Brandini N, Poirier D, Costa Santos SJ, Abril G (2016) Spatio-temporal variability of methane (CH4) concentrations and diffusive fluxes from a tropical coastal embayment surrounded by a large urban area (Guanabara Bay, Rio de Janeiro, Brazil). Limnol Oceanogr 61:238–252

    Google Scholar 

  • Crosswell JR, Anderson IC, Stanhope JW et al (2017) Carbon budget of a shallow, lagoonal estuary: transformations and source-sink dynamics along the river-estuary-ocean continuum. Limnol Oceanogr 62:S29–S45

    CAS  Google Scholar 

  • Doering PH, Oviatt CA, Nowicki BL, Klos EG, Reed LW (1995) Phosphorus and nitrogen limitation of primary production in a simulated estuarine gradient. Mar Ecol Prog Ser 124:271–287

    CAS  Google Scholar 

  • Drake H, Åström ME, Heim C et al (2015) Extreme 13C depletion of carbonates formed during oxidation of biogenic methane in fractured granite. Nat Commun 6:7020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Druffel ERM, Williams PM, Robertson K et al (1989) Radiocarbon in dissolved organic and inorganic carbon from the central North Pacific. Radiocarbon 31:523–532

    Google Scholar 

  • Druffel ERM, Williams PM, Bauer JE, Ertel JR (1992) Cycling of dissolved and particulate organic matter in the open ocean. J Geophys Res 97:15639–15659

    CAS  Google Scholar 

  • Dutta MK, Bianchi TS, Mukhopadhyay SK (2017) Mangrove methane biogeochemistry in the Indian Sundarbans: a proposed budget. Front Mar Sci 4:187

    Google Scholar 

  • Dvorak M, Mora G, Graniero L, Surge D (2016) Carbon and nitrogen tracers of land use effects on net ecosystem metabolism in mangrove estuaries, southwest Florida. Estuar Coast Shelf Sci 181:14–26

    CAS  Google Scholar 

  • Fry B (2002) Conservative mixing of stable isotopes across estuarine salinity gradients: a conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25:264–271

    Google Scholar 

  • Fry B (2006) Stable Isotope Ecology. Springer, New York, pp 21–39

    Google Scholar 

  • Gatland JR, Santos IR, Maher DT, Duncan TM, Erler DV (2014) Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: implications for wetland global warming potential. J Geophys Res 119:1698–1716

    CAS  Google Scholar 

  • GeoLINK (2013) Coffs Creek Estuary Coastal Zone Management Plan—Estuary Condition Study

  • GeoLINK in association with Aquatic Science and Management and GECO Environmental, NSW, Australia

  • GHD (2010) Boambee/newports processes study. GHD Pty. Ltd, Brisbane

    Google Scholar 

  • Grasset C, Abril G, Guillard L, Delolme C, Bornette G (2016) Carbon emission along a eutrophication gradient in temperate riverine wetlands: effect of primary productivity and plant community composition. Freshw Biol 61:1405–1420

    CAS  Google Scholar 

  • Gypens N, Borges AV, Lancelot C (2009) Effect of eutrophication on air–sea CO2 fluxes in the coastal Southern North Sea: a model study of the past 50 years. Glob Change Biol 15:1040–1056

    Google Scholar 

  • Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis, Third edn. Wiley, Weinheim

    Google Scholar 

  • He S, Xu YJ (2017) Assessing dissolved carbon transport and transformation along an estuarine river with stable isotope analyses. Estuar Coast Shelf Sci 197:93–106

    CAS  Google Scholar 

  • Hemminga MA, Mateo MA (1996) Stable carbon isotopes in seagrasses: variability in ratios and use in ecological studies. Mar Ecol Prog Ser 140:285–298

    Google Scholar 

  • Hilting AK, Kump LR, Bralower TJ (2008) Variations in the oceanic vertical carbon isotope gradient and their implications for the Paleocene-Eocene biological pump. Paleoceanography 23:PA3222

    Google Scholar 

  • Hooke R, Martín-Duque J, Pedraza J (2012) Land transformation by humans: a review. GSA Today 22:4–10

    Google Scholar 

  • Hopkinson CS, Cai WJ, Hu X (2012) Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude. Curr Op Environ Sustain 4:1–9

    Google Scholar 

  • Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over 3 decades. Limnol Oceanogr 51:364–376

    CAS  Google Scholar 

  • Jeffrey LC, Maher DT, Santos IR, Call M, Reading MJ, Holloway C, Tait D (2018a) The spatial and temporal drivers of pCO2, pCH4 and gas transfer velocity within a subtropical estuary. Estuarine Estuar Coast Shelf Sci 208:83–95

    CAS  Google Scholar 

  • Jeffrey LC, Santos IR, Tait DT, Makings U, Maher DT (2018b) Seasonal drivers of carbon dioxide dynamics in a hydrologically modified subtropical tidal river and estuary (Caboolture River, Australia). J Geophys Res 123(6):1827–1849

    CAS  Google Scholar 

  • Joesoef A, Huang WJ, Gao Y, Cai WJ (2015) Air–water fluxes and sources of carbon dioxide in the Delaware Estuary: spatial and seasonal variability. Biogeosciences 12:6085–6101

    Google Scholar 

  • Kao WY, Chang KW (1998) Stable carbon isotope ratio and nutrient content of the Kandelia candel mangrove populations of different growth forms. Bot Bull Acad Sin 39:39–45

    Google Scholar 

  • Kelly CA, Coffin RB (1998) Stable carbon isotope evidence for alternative bacterial carbon sources in the Gulf of Mexico. Limnol Oceanogr 43(8):1962–1969

    Google Scholar 

  • Kemp WM, Testa JM (2011) Metabolic balance between ecosystem production and consumption. In: Wolansky E, McLusky D (eds) Treatise on Estuarine and Coastal Science, vol 7, Chap. 6. Elsevier, Oxford

    Google Scholar 

  • Kemp WM, Boynton WR, Adolf JE et al (2005) Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar Ecol Prog Ser 303:1–29

    Google Scholar 

  • Lalonde K, Middlestead P, Gélinas Y (2014) Automation of 13C/12C ratio measurement for freshwater and seawater DOC using high temperature combustion. Limnol Oceanogr 2:816–829

    Google Scholar 

  • Lichtfouse E, Dou S, Girardin C, Grably M, Balesdent J, Behar F, Vandenbroucke M (1995) Unexpected 13C-enrichment of organic components from wheat crop soils: evidence for the in situ origin of soil organic matter. Org Geochem 23:865–868

    CAS  Google Scholar 

  • Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Menard P (ed) The role of air-sea exchange in geochemical cycling. Reidel, Boston, pp 113–129

    Google Scholar 

  • Loder TC, Reichard RP (1981) The dynamics of conservative mixing in estuaries. Estuaries 4:64–69

    Google Scholar 

  • Macklin PA, Maher DT, Santos IR (2014) Estuarine canal estate waters: hotspots of CO2 outgassing driven by enhanced groundwater discharge? Mar Chem 167:82–92

    CAS  Google Scholar 

  • Maher D, Eyre BD (2011) Insights into estuarine benthic dissolved organic carbon (DOC) dynamics using δ13C-DOC values, phospholipid fatty acids and dissolved organic nutrient fluxes. Geochim Cosmochim Acta 75:1889–1902

    CAS  Google Scholar 

  • Maher DT, Santos IR, Golsby-Smith L, Gleeson J, Eyre BD (2013) Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink? Limnol Oceanogr 58:475–488

    CAS  Google Scholar 

  • Maher DT, Santos IR, Schulz KG, Call M, Jacobsen GE, Sanders CJ (2017) Blue carbon oxidation revealed by radiogenic and stable isotopes in a mangrove system. Geophys Res Lett 44:4889–4896

    CAS  Google Scholar 

  • McGlynn BL, McDonnell JJ (2003) Quantifying the relative contributions of riparian and hillslope zones to catchment runoff. Water Resour Res 39(11):1310

    Google Scholar 

  • McGlynn BL, McDonnell JJ, Seibert J, Kendall C (2004) Scale effects on headwater catchment runoff timing, flow sources, and groundwater- streamflow relations. Water Resour Res 40:W0750

    Google Scholar 

  • McKee KL, Feller IC, Popp M, Wanek W (2002) Mangrove isotopic (δ15N and δ 13C) fractionation across a nitrogen vs. phosphorus limitation gradient. Ecology 83:1065–1075

    Google Scholar 

  • Milford HB (1999) Soil landscapes of the coffs harbour 1:100 000 sheet. Department of Land and Water Conservation, Sydney

    Google Scholar 

  • Müller D, Bange HW, Warneke T et al (2016) Nitrous oxide and methane in two tropical estuaries in a peat-dominated region of northwestern Borneo. Biogeosciences 13:2415–2428

    Google Scholar 

  • Myklestad SM (2000) Dissolved organic carbon from phytoplankton. In: Wangersky PJ (eds.) Marine chemistry. The handbook of environmental chemistry (Vol. 5 Series: Water Pollution), Vol 5D. Springer, Berlin

  • Noriega CED, Araujo M, Lefevre N (2013) Spatial and temporal variability of the CO2 fluxes in a tropical, highly urbanized estuary. Estuaries Coasts 36:1054–1072

    CAS  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    Google Scholar 

  • Oczkowski A, Markham E, Hanson A, Wigand C (2014) Carbon stable isotopes as indicators of coastal eutrophication. Ecol Appl 24:457–466

    PubMed  Google Scholar 

  • OzCoasts (2013) Estuary search: Coffs Harbour Creek/Boambee Creek/Bonville Creek. http://www.ozcoasts.gov.au/search_data/estuary_search.jsp. Accessed 7 Dec 2017

  • Park R, Epstein S (1960) Carbon isotope fractionation during photosynthesis. Geochim Cosmochim Acta 21:110–126

    CAS  Google Scholar 

  • Pérez A, Machado W, Gutierrez D et al (2017) Changes in organic carbon accumulation driven by mangrove expansion and deforestation in a New Zealand estuary. Estuar Coast Shelf Sci 192:108–116

    Google Scholar 

  • Petrone KC, Fellman JB, Hood E, Donn MJ, Grierson PF (2011) The origin and function of dissolved organic matter in agro-urban coastal streams. J Geophys Res 116:G01028

    Google Scholar 

  • Pierrot D, Lewis E, Wallace D (2006) MS Excel program developed for CO2 system calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, Tennessee

    Google Scholar 

  • Polsenaere P, Abril G (2012) Modelling CO2 degassing from small acidic rivers using water pCO2, DIC and δ13C-DIC data. Geochim Cosmochim Acta 91:220–239

    CAS  Google Scholar 

  • Quinn G, Keough M (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

  • Racape V, Lo Monaco C, Metzl N, Pierre C (2010) Summer and winter distribution of δ13CDIC in surface waters of the South Indian Ocean. Tellus 62B:660–673

    CAS  Google Scholar 

  • Raymond PA, Hamilton SK (2018) Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans. Limnol Oceanogr Lett 3(3):143–155

    Google Scholar 

  • Raymond PA, Zappa CJ, Butman D et al (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr: Fluids Environ 2:41–53

    Google Scholar 

  • Raymond PA, Saiers JE, Sobczak WV (2016) Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97(1):5–16

    PubMed  Google Scholar 

  • Rosentreter JA, Maher DT, Ho DT, Call M, Barr JG, Eyre BD (2017) Spatial and temporal variability of CO2 and CH4 gas transfer velocities and quantification of the CH4 microbubble flux in mangrove dominated estuaries. Limnol Oceanogr 62:561–578

    CAS  Google Scholar 

  • Roy PS, Williams RJ, Jones AR et al (2001) Structure and function of South-East Australian estuaries. Estuar Coast Shelf Sci 53(3):351–384

    Google Scholar 

  • Ryan DA, Heap AD, Radke L, Heggie DT (2003) Conceptual Models of Australia’s Estuaries and Coastal Waterways: Applications for Coastal Resource Management. Geoscience Australia, Record 2003/09

    Google Scholar 

  • Sadat-Noori M, Maher DT, Santos IR (2016) Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary. Estuar Coast 39:639–656

    CAS  Google Scholar 

  • Sadat-Noori M, Santos IR, Tait DR, Reading MJ, Sanders CJ (2017) High porewater exchange in a mangrove-dominated estuary revealed from short-lived radium isotopes. J Hydrol 553:188–198

    CAS  Google Scholar 

  • Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmfer G (2002) The human footprint and the last of the wild. Bioscience 52(10):891–904

    Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for plants. Plant Physiol 47:380–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • St-Jean G (2003) Automated quantitative and isotopic (13C) analysis of dissolved inorganic carbon and dissolved organic carbon in continous-flow using a total organic carbon analyser. Rapid Commun Mass Spectrom 17:419–428

    CAS  PubMed  Google Scholar 

  • Struyf E, Damme SV, Meire P (2004) Possible effects of climate change on estuarine nutrient fluxes: a case study in the highly nitrified Schelde estuary (Belgium, The Netherlands). Estuar Coast Shelf Sci 52:131–142

    Google Scholar 

  • Tait DR, Maher DT, Wong WW, Santos IR, Sadat-noori M, Holloway C, Cook PLM (2017) Greenhouse gas dynamics in a salt-wedge estuary revealed by high resolution cavity ring-down spectroscopy observations. Environ Sci Technol 51(23):13771–13778

    CAS  PubMed  Google Scholar 

  • Thornton DC (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol 49(1):20–46

    CAS  Google Scholar 

  • Vaalgamaa S, Conley DJ (2008) Detecting environmental change in estuaries: nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 76:45–56

    Google Scholar 

  • Valiela I, Bowen JL (2002) Nitrogen sources to watersheds and estuaries: role of land cover mosaics and losses within watersheds. Environ Pollut 118:239–248

    CAS  PubMed  Google Scholar 

  • Valiela I, Bartholomew M, Giblin A et al (2014) Watershed deforestation and down-estuary transformations alter sources, transport, and export of suspended particles in Panamanian mangrove estuaries. Ecosystems 17:96–111

    Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Google Scholar 

  • Venkiteswaran JJ, Schiff SL, Wallin MB (2014) Large carbon dioxide fluxes from headwater boreal and sub-boreal streams. PLoS One 9(7):e101756

    PubMed  PubMed Central  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Wang X, Veizer J (2000) Respiration-photosynthesis balance of terrestrial aquatic ecosystems, Ottawa area, Canada. Geochim Cosmochim Acta 64(22):3775–3786

    CAS  Google Scholar 

  • Wang ZA, Kroeger KD, Ganju NK, Gonneea ME, Chu SN (2016) Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnol Oceanogr 61:1916–1931

    CAS  Google Scholar 

  • Wanninkhof R (2014) Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr–Meth 12:351–362

    Google Scholar 

  • Ward ND, Bianchi TS, Sawakuchi H et al (2016) The reactivity of plant-derived organic matter and the potential importance of priming effects in the lower Amazon River. J Geophys Res Biogeosci 121:1522–1539

    CAS  Google Scholar 

  • Webb JR, Santos IR, Tait DR, Sippo JZ, Macdonald BCT, Robson B, Maher DT (2016) Divergent drivers of carbon dioxide and methane dynamics in an agricultural coastal floodplain: post-flood hydrological and biological drivers. Chem Geol 440:313–325

    CAS  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2(3):203–215

    CAS  Google Scholar 

  • Whitall D, Bricker S, Ferreira JG, Nobre A, Simas T, Silva MC (2007) Assessment of eutrophication in estuaries: pressure-state-response and source apportionment. Environ Manag 40:678–690

    Google Scholar 

  • White SA, Santos IR, Hessey S (2018) Nitrate loads in sub-tropical headwater streams driven by intensive horticulture. Environ Pollut 243:1036–1046

    CAS  PubMed  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    CAS  Google Scholar 

  • Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation - isotope evidence. Geochim Cosmochim Acta 50:693–709

    CAS  Google Scholar 

  • Wigley TM, Plummer LN, Pearson FJ (1978) Mass transfer and carbon isotope evolution in natural water systems. Geochim Cosmochim Acta 42:1117–1139

    CAS  Google Scholar 

  • Wild-Allen K, Andrewartha J (2016) Connectivity between estuaries influences nutrient transport, cycling and water quality. Mar Chem 185:12–26

    CAS  Google Scholar 

  • Williams PM, Druffel ERM (1987) Radiocarbon in dissolved organic matter in the Central North Pacific Ocean. Nature 330:246–248

    CAS  Google Scholar 

  • Yao H, Xinping H (2017) Responses of carbonate system and CO2 flux to extended drought and intense flooding in a semiarid subtropical estuary. Limnol Oceanogr 62:S112–S130

    CAS  Google Scholar 

  • Yuan Z, Jiang S, Sheng H, Liu X, Hua H, Liu X, Zhang Y (2018) Human perturbation of the global phosphorus cycle: changes and consequences. Environ Sci Technol 52(5):2438–2450

    CAS  PubMed  Google Scholar 

  • Zammit C, Sivapalan M, Kelsey P, Viney NR (2005) Modelling the effects of land-use modifications to control nutrient loads from an agricultural catchment in Western Australia. Ecol Model 187:60–70

    Google Scholar 

  • Zeebe RE, Wolf-Gladrow D D (2001) CO2 In Seawater: Equilibrium, Kinetics, Isotopes. Elsevier, Amsterdam

    Google Scholar 

  • Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–114

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Summer Barron, Ashley McMahon, James Sippo, Mitchell Call and Damien Eggeling for their assistance with field surveys, and Coffs Harbour City Council (CHCC) for their assistance with logistics. We acknowledge funding from the Australian Research Council (DE140101733, DE150100581 and LE120100156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Looman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1800 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Looman, A., Santos, I.R., Tait, D.R. et al. Dissolved carbon, greenhouse gases, and δ13C dynamics in four estuaries across a land use gradient. Aquat Sci 81, 22 (2019). https://doi.org/10.1007/s00027-018-0617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-018-0617-9

Keywords

Navigation