Interactive physical and biotic factors control dissolved oxygen in salmon spawning streams in coastal Alaska

Abstract

Streamwater dissolved oxygen (DO) concentrations are driven by interacting physical and biotic parameters. Future DO depletion events in small, coastal salmon streams are therefore likely to be driven by changes in hydrology in addition to atmospheric warming. We measured DO, temperature, discharge and spawning salmon abundance in upstream (reference reach) and downstream salmon bearing reaches of four streams in southeast Alaska to determine how multiple physical and biotic factors interact to control streamwater DO. Stream temperature ranged from 5.1 to 15.8 °C and fell within the optimum range that is considered favorable for salmon physiology. Concentrations of DO ranged from 2.8 to 12.3 mg/L, with concentrations significantly lower (p < 0.01) in the downstream compared to upstream sites when spawning salmon were present. These findings likely indicate that spawning salmon can substantially alter ecosystem respiration and thus DO regimes in stream ecosystems. Furthermore, DO concentrations in lower Peterson Creek were especially low (< 4.0 mg/L) in early August when stream temperature exceeded 14 °C, discharge was low and spawning salmon were abundant. These results illustrate that the impacts of enhanced ecosystem respiration due to high densities of spawning salmon, elevated stream temperature and reduced aeration stemming from low streamflow are likely additive in terms of reducing DO. Furthermore, it is highly likely that stray salmon released from local hatcheries augmented spawner densities in our study streams. This suggests that the straying of hatchery salmon into natural stock salmon streams may contribute to streamwater DO depletion via enhanced stream ecosystem respiration.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alabaster JS (1989) The dissolved oxygen and temperature requirements of king salmon, Oncorhynchus tshawytscha, in the San Joaquin Delta, California. J Fish Biol 34:331–332. https://doi.org/10.1111/j.1095-8649.1989.tb03315.x

    Article  Google Scholar 

  2. Almodóvar A, Nicola GG, Ayllón D, Elvira B (2012) Global warming threatens the persistence of Mediterranean brown trout. Glob Change Biol 18:1549–1560. https://doi.org/10.1111/j.1365-2486.2011.02608.x

    Article  Google Scholar 

  3. Araki H, Schmid C (2010) Is hatchery stocking a help or harm? Aquaculture 308:S2–S11. https://doi.org/10.1016/j.aquaculture.2010.05.036

    Article  Google Scholar 

  4. Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16:743–753. https://doi.org/10.1111/j.1466-8238.2007.00359.x

    Article  Google Scholar 

  5. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309. https://doi.org/10.1038/nature04141

    CAS  Article  PubMed  Google Scholar 

  6. Beechie T, Buhle E, Ruckelshaus M et al (2006) Hydrologic regime and the conservation of salmon life history diversity. Biol Conserv 130:560–572. https://doi.org/10.1016/j.biocon.2006.01.019

    Article  Google Scholar 

  7. Ben-David M, Hanley TA, Klein DR, Schell DM (1997) Seasonal changes in diets of coastal and riverine mink: the role of spawning Pacific salmon. Can J Zool 75:803–811. https://doi.org/10.1139/z97-102

    Article  Google Scholar 

  8. Brenner RE, Moffitt SD, Grant WS (2012) Straying of hatchery salmon in Prince William Sound, Alaska. Environ Biol Fishes 94:179–195. https://doi.org/10.1007/s10641-012-9975-7

    Article  Google Scholar 

  9. Brett JR (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). Integr Comp Biol 11:99–113. https://doi.org/10.1093/icb/11.1.99

    Article  Google Scholar 

  10. Caissie D (2006) The thermal regime of rivers: a review. Freshw Biol 51:1389–1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x

    Article  Google Scholar 

  11. Caplow T, Schlosser P, Ho DT (2004) Tracer study of mixing and transport in the upper Hudson River with multiple dams. J Environ Eng 130:1498–1506. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:12(1498)

    CAS  Article  Google Scholar 

  12. Chaloner DT, Martin KM, Wipfli MS et al (2002) Marine carbon and nitrogen in southeastern Alaska stream food webs: evidence from artificial and natural streams. Can J Fish Aquat Sci 59:1257–1265. https://doi.org/10.1139/f02-084

    CAS  Article  Google Scholar 

  13. Chaloner DT, Lamberti GA, Merritt RW et al (2004) Variation in responses to spawning Pacific salmon among three south-eastern Alaska streams. Freshw Biol 49:587–599. https://doi.org/10.1111/j.1365-2427.2004.01213.x

    Article  Google Scholar 

  14. Chilcote MW, Goodson KW, Falcy MR (2011) Reduced recruitment performance in natural populations of anadromous salmonids associated with hatchery-reared fish. Can J Fish Aquat Sci 68:511–522. https://doi.org/10.1139/F10-168

    Article  Google Scholar 

  15. Clark JH, McGregor A, Mecum RD et al (2006) The commercial salmon fishery in Alaska. Alask Fish Res Bull 12:1–146

    Google Scholar 

  16. Crozier LG, Hendry AP, Lawson PW et al (2008) Perspective: potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon: evolutionary responses to climate change in salmon. Evol Appl 1:252–270. https://doi.org/10.1111/j.1752-4571.2008.00033.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Eggers DM, Heinl SC (2008) Chum salmon stock status and escapement goals in southeast Alaska. Alaska Department of Fish and Game, special publication no., Anchorage, pp 08–19

    Google Scholar 

  18. Elliott H (2001) Modelling growth of brown trout, Salmo trutta, in terms of weight and energy units. Freshw Biol 46:679–692. https://doi.org/10.1046/j.1365-2427.2001.00705.x

    Article  Google Scholar 

  19. Essington TE, Quinn TP, Ewert VE (2000) Intra- and inter-specific competition and the reproductive success of sympatric Pacific salmon. Can J Fish Aquat Sci 57:205–213. https://doi.org/10.1139/f99-198

    Article  Google Scholar 

  20. Fagan WF (2002) Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83:3243–3249. https://doi.org/10.1890/0012-9658(2002)083%5B3243:CFAERI%5D2.0.CO;2

    Article  Google Scholar 

  21. Fellman JB, Nagorski S, Pyare S et al (2014) Stream temperature response to variable glacier coverage in coastal watersheds of Southeast Alaska. Hydrol Process 28:2062–2073. https://doi.org/10.1002/hyp.9742

    Article  Google Scholar 

  22. Fellman JB, Hood E, Dryer W, Pyare S (2015) Stream physical characteristics impact habitat quality for Pacific salmon in two temperate coastal watersheds. PLOS ONE 10:e0132652. https://doi.org/10.1371/journal.pone.0132652

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Ficklin DL, Barnhart BL, Knouft JH et al (2014) Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers. Hydrol Earth Syst Sci 18:4897–4912. https://doi.org/10.5194/hess-18-4897-2014

    Article  Google Scholar 

  24. Ford MJ (2002) Selection in captivity during supportive breeding may reduce fitness in the wild. Conserv Biol 16:815–825. https://doi.org/10.1046/j.1523-1739.2002.00257.x

    Article  Google Scholar 

  25. Fukushima M, Quinn TJ, Smoker WW (1998) Estimation of eggs lost from superimposed pink salmon redds. Can J Fish Aquat Sci 55:618–625. https://doi.org/10.1139/f97-260

    Article  Google Scholar 

  26. Geist DR, Abernethy CS, Hand KD et al (2006) Survival, development and growth of fall chinook salmon embryos, alevins and fry exposed to variable thermal and dissolved oxygen regimes. Trans Am Fish Soc 135:1462–1477

    CAS  Article  Google Scholar 

  27. Gende SM, Quinn TP, Willson MF (2001) Consumption choice by bears feeding on salmon. Oecologia 127:372–382. https://doi.org/10.1007/s004420000590

    CAS  Article  PubMed  Google Scholar 

  28. Gillan BJ, Harper JT, Moore JN (2010) Timing of present and future snowmelt from high elevations in northwest Montana: present and future snowmelt. Water Resour Res 46: https://doi.org/10.1029/2009WR007861

  29. Graeber D, Pusch MT, Lorenz S, Brauns M (2013) Cascading effects of flow reduction on the benthic invertebrate community in a lowland river. Hydrobiologia 717:147–159. https://doi.org/10.1007/s10750-013-1570-1

    CAS  Article  Google Scholar 

  30. Hall RO, Kennedy TA, Rosi-Marshall EJ (2012) Air–water oxygen exchange in a large whitewater river: air–water O2 exchange in the Colorado River. Limnol Oceanogr Fluids Environ 2:1–11. https://doi.org/10.1215/21573689-1572535

  31. Healey M, Bradford M (2011) The cumulative impacts of climate change on Fraser River sockeye salmon (Oncorhynchus nerka) and implications for management. Can J Fish Aquat Sci 68:718–737. https://doi.org/10.1139/f2011-010

    Article  Google Scholar 

  32. Holtgrieve GW, Schindler DE (2011) Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams. Ecology 92:373–385. https://doi.org/10.1890/09-1694.1

    Article  PubMed  Google Scholar 

  33. Honea JM, Jorgensen JC, McClure MM et al (2009) Evaluating habitat effects on population status: influence of habitat restoration on spring-run Chinook salmon. Freshw Biol 54:1576–1592. https://doi.org/10.1111/j.1365-2427.2009.02208.x

    Article  Google Scholar 

  34. Hood E, Berner L (2009) Effects of changing glacial coverage on the physical and biogeochemical properties of coastal streams in southeastern Alaska. J Geophys Res 114: https://doi.org/10.1029/2009JG000971

  35. Hood E, Fellman J, Edwards RT (2007) Salmon influences on dissolved organic matter in a coastal temperate brown-water stream: an application of fluorescence spectroscopy. Limnol Oceanogr 52:1580–1587

    CAS  Article  Google Scholar 

  36. Irvine JR, Fukuwaka M (2011) Pacific salmon abundance trends and climate change. ICES J Mar Sci 68:1122–1130. https://doi.org/10.1093/icesjms/fsq199

    Article  Google Scholar 

  37. Irvine JR, Fukuwaka M, Kaga T et al (2009) Pacific salmon status and abundance trends. NPAFC Doc 1199 Rev 1:153

    Google Scholar 

  38. Isaak DJ, Luce CH, Rieman BE et al (2010) Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network. Ecol Appl 20:1350–1371. https://doi.org/10.1890/09-0822.1

    Article  PubMed  Google Scholar 

  39. Jonsson B, Jonsson N (2009) A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J Fish Biol 75:2381–2447. https://doi.org/10.1111/j.1095-8649.2009.02380.x

    CAS  Article  PubMed  Google Scholar 

  40. Levi PS, Tank JL, Rüegg J et al (2013) Whole-stream metabolism responds to spawning Pacific salmon in their native and introduced ranges. Ecosystems 16:269–283. https://doi.org/10.1007/s10021-012-9613-4

    CAS  Article  Google Scholar 

  41. Luce CH, Holden ZA (2009) Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006. Geophys Res Lett. https://doi.org/10.1029/2009GL039407

    Article  Google Scholar 

  42. Matthews KR, Berg NH (1997) Rainbow trout responses to water temperature and dissolved oxygen stress in two southern California stream pools. J Fish Biol 50:50–67. https://doi.org/10.1111/j.1095-8649.1997. tb01339.x

    Article  Google Scholar 

  43. Mellina E, Moore RD, Hinch SG et al (2002) Stream temperature responses to clearcut logging in British Columbia: the moderating influences of groundwater and headwater lakes. Can J Fish Aquat Sci 59:1886–1900. https://doi.org/10.1139/f02-158

    Article  Google Scholar 

  44. Mitchell NL, Lamberti GA (2005) Responses in dissolved nutrients and epilithon abundance to spawning salmon in southeast Alaska streams. Limnol Oceanogr 50:217–227. https://doi.org/10.4319/lo.2005.50.1.0217

    CAS  Article  Google Scholar 

  45. Moore RD (2006) Stream temperature patterns in British Columbia, Canada, based on routine spot measurements. Can Water Resour J 31:41–56. https://doi.org/10.4296/cwrj3101041

    Article  Google Scholar 

  46. Moore JW, Schindler DE, Carter JL et al (2007) Biotic control of stream fluxes: spawning salmon drive nutrient and matter export. Ecology 88:1278–1291. https://doi.org/10.1890/06-0782

    Article  PubMed  Google Scholar 

  47. Morrill JC, Bales RC, Conklin MH (2005) Estimating stream temperature from air temperature: implications for future water quality. J Environ Eng 131:139–146. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(139)

    CAS  Article  Google Scholar 

  48. Mote PW, Salathé EP (2010) Future climate in the Pacific Northwest. Clim Change 102:29–50. https://doi.org/10.1007/s10584-010-9848-z

    Article  Google Scholar 

  49. Naish KA, Taylor JE, Levin PS et al (2007) An evaluation of the effects of conservation and fishery enhancement hatcheries on wild populations of salmon. In: Advances in marine biology. Elsevier, New York, pp 61–194

  50. Neal EG, Hood E, Smikrud K (2010) Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska. Geophys Res Lett 37:L06404. https://doi.org/10.1029/2010GL042385

    Article  Google Scholar 

  51. Nolin AW, Daly C (2006) Mapping “at risk” snow in the Pacific Northwest. J Hydrometeorol 7:1164–1171. https://doi.org/10.1175/JHM543.1

    Article  Google Scholar 

  52. Palmer MA, Lettenmaier DP, Poff NL et al (2009) Climate change and river ecosystems: protection and adaptation options. Environ Manag 44:1053–1068. https://doi.org/10.1007/s00267-009-9329-1

    Article  Google Scholar 

  53. Peterson JT, Kwak TJ (1999) Modeling the effects of land use and climate on riverine smallmouth bass. Ecol Appl 9:1391–1404. https://doi.org/10.1890/1051-0761(1999)009%5B1391:MTEOLU%5D2.0.CO;2

    Article  Google Scholar 

  54. Piston AW, Heinl SC (2012) Hatchery chum salmon straying studies in southeast Alaska, 2008–2010. In: Alaska Department of Fish and Game, fishery manuscript series no. 12-01

  55. Quinn TP, Peterson JA, Gallucci VF et al (2002) Artificial selection and environmental change: countervailing factors affecting the timing of spawning by coho and chinook salmon. Trans Am Fish Soc 131:591–598 https://doi.org/10.1577/1548-8659(2002)131%3C0591:ASAECC%3E2.0.CO;2

    Article  Google Scholar 

  56. Rauscher SA, Pal JS, Diffenbaugh NS, Benedetti MM (2008) Future changes in snowmelt-driven runoff timing over the western US. Geophys Res Lett 35: https://doi.org/10.1029/2008GL034424

  57. Regonda SK, Rajagopalan B, Clark M, Pitlick J (2005) Seasonal cycle shifts in hydroclimatology over the western United States. J Clim 18:372–384. https://doi.org/10.1175/JCLI-3272.1

    Article  Google Scholar 

  58. Richards J, Moore RD (2011) Discharge dependence of stream albedo in a steep proglacial channel: scientific briefing. Hydrol Process 25:4154–4158. https://doi.org/10.1002/hyp.8343

    Article  Google Scholar 

  59. Shanley CS, Pyare S, Goldstein MI et al (2015) Climate change implications in the northern coastal temperate rainforest of North America. Clim Change 130:155–170. https://doi.org/10.1007/s10584-015-1355-9

    CAS  Article  Google Scholar 

  60. Spoor WA (1990) Distribution of fingerling brook trout, Salvelinus fontinalis (Mitchill), in dissolved oxygen concentration gradients. J Fish Biol 36:363–373. https://doi.org/10.1111/j.1095-8649.1990.tb05616.x

    Article  Google Scholar 

  61. Tiegs SD, Campbell EY, Levi PS et al (2009) Separating physical disturbance and nutrient enrichment caused by Pacific salmon in stream ecosystems. Freshw Biol 54:1864–1875. https://doi.org/10.1111/j.1365-2427.2009.02232.x

    CAS  Article  Google Scholar 

  62. Tillotson MD, Quinn TP (2017) Climate and conspecific density trigger pre-spawning mortality in sockeye salmon (Oncorhynchus nerka). Fish Res 188:138–148. https://doi.org/10.1016/j.fishres.2016.12.013

    Article  Google Scholar 

  63. van Vliet MTH, Franssen WHP, Yearsley JR et al (2013) Global river discharge and water temperature under climate change. Glob Environ Change 23:450–464. https://doi.org/10.1016/j.gloenvcha.2012.11.002

    Article  Google Scholar 

  64. Vanni MJ (2002) Nutrient cycling by animals in freshwater ecosystems. Annu Rev Ecol Syst 33:341–370. https://doi.org/10.1146/annurev.ecolsys.33.010802.150519

    Article  Google Scholar 

  65. Wenger SJ, Isaak DJ, Luce CH et al (2011) Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proc Natl Acad Sci 108:14175–14180. https://doi.org/10.1073/pnas.1103097108

    Article  PubMed  Google Scholar 

  66. Whitmore CM, Warren CE, Doudoroff P (1960) Avoidance reactions of salmonid and centrarchid fishes to low oxygen concentrations. Trans Am Fish Soc 89:17–26. https://doi.org/10.1577/1548-8659(1960)89%5B17:AROSAC%5D2.0.CO;2

    Article  Google Scholar 

  67. Wu H, Kimball JS, Elsner MM et al (2012) Projected climate change impacts on the hydrology and temperature of Pacific Northwest rivers: climate change impacts on streamflow and temperature. Water Resour Res. https://doi.org/10.1029/2012WR012082

    Article  Google Scholar 

Download references

Acknowledgements

We thank Alex Whitehead, Alex Botelho, Chris Salazar, and Pat Dryer with the University of Alaska Southeast for field assistance and Jarrod Sowa with the Alaska Department of Fish and Game for streamflow data in Peterson Creek. This study received support from Alaska EPSCoR (NSF award #OIA-1208927) and the Alaska Climate Science Center. Research reported in this publication was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant number P20GM103395. The content is solely the responsibility of the authors and does not necessarily reflect the official views of the NIH.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jason B. Fellman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fellman, J.B., Hood, E., Nagorski, S. et al. Interactive physical and biotic factors control dissolved oxygen in salmon spawning streams in coastal Alaska. Aquat Sci 81, 2 (2019). https://doi.org/10.1007/s00027-018-0597-9

Download citation

Keywords

  • Stream temperature
  • Dissolved oxygen
  • Discharge
  • Pacific salmon
  • Hatchery