Skip to main content

Sources of nutrients behind recent eutrophication of Lago de Tota, a high mountain Andean lake

Abstract

Lago de Tota, the largest lake in Colombia, is the primary source of water for 250,000 people and a focus of regional economic activity in agriculture, aquaculture, and tourism. Recently, agencies and stakeholders report a shift from the naturally oligotrophic state toward eutrophy. However, the relative contributions of different inputs, including agricultural runoff, aquaculture and municipal wastewaters are unknown, hampering efforts to mitigate nutrient loading. We examined spatial and temporal variation in the trophic state of the lake over one year, as well as stable C and N isotopic profiles of aquatic producers and consumers in relation to two main potential sources (fertilizer and trout feed). We found that Lago de Tota is moderately eutrophic (average chlorophyll-a: 6.4 µg/L, TN: 1.5 mg/L and TP: 0.06 mg/L) with a 32% reduction of transparency over the last 15 years. δ15N and δ13C of aquatic organisms and surface sediments were enriched relative to prehistoric sediments, indicating that human sources dominate the C and N cycles of the lake. δ15N of macrophytes (15.7‰), particulate organic matter (12.5‰), and invertebrates (20.2‰) were enriched relative to trout food (4.6‰), but similar to chicken manure (13.7‰), suggesting that farming in the watershed may be a more important source of N than aquaculture. Our results indicate that Lago de Tota is on a trajectory toward eutrophication with potentially severe consequences for water resources in a rapidly developing mountain region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Altabet MA, Francois R, Murray DW, Prell WL (1995) Climate-related variations in denitrification in the arabian sea from sediment n-15/n-14 ratios. Nature 373:506–509

    CAS  Article  Google Scholar 

  2. APHA (1976) Standard methods for the examination of water and wastewater. In. D.C, American Public Health Association Washington

  3. Archundia D, Duwig C, Spadini L, Uzu G, Guedron S, Morel MC, Cortez R, Ramos OR, Chincheros J, Martins JMF (2017) How Uncontrolled Urban Expansion Increases the Contamination of the Titicaca Lake Basin (El Alto, La Paz, Bolivia). Water Air and Soil Pollution, 228

  4. Cabana G, Rasmussen JB (1996) Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci USA 93:10844–10847

    Article  Google Scholar 

  5. Cañon J, Valdes J (2011) Assessing the influence of global climate and anthropogenic activities on the water balance of an Andean Lake. J Water Resour Protect 3:883–891

    Article  Google Scholar 

  6. Cañón J, Rodríguez C (2002) Análisis isotópico en el lago Tota. XV Seminario Nacional de Hidráulica e Hidrología. In: Medellin, Colombia

    Google Scholar 

  7. CAR (1983) Informe sobre el Lago de Tota Consultado de Richard Vollenweider. In: Corporación Autónoma Regional CAR y Organización Panamericana de la Salud. Bogotá, Colombia Bogota, Colombia, p 26 pp

    Google Scholar 

  8. Cardozo AYV, Gomes DF, da Silva EM, Duque SRE, Rangel JOC, Sifeddine A, Turcq B, Albuquerque ALS (2014) Holocene paleolimnological reconstruction of a high altitude Colombian tropical lake. Palaeogeogr Palaeoclimatol Palaeoecol 415:127–136

    Article  Google Scholar 

  9. Carlson RE (1977) Trophic state index for lakes. Limnol Oceanogr 22:361–369

    CAS  Article  Google Scholar 

  10. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  11. Carpenter SR, Ludwig D, Brock WA (1999) Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9:751–771

    Article  Google Scholar 

  12. Carpenter SR, Brock WA, Folke C, van Nes EH, Scheffer M (2015) Allowing variance may enlarge the safe operating space for exploited ecosystems. Proc Natl Acad Sci USA 112:14384–14389

    Article  Google Scholar 

  13. Catalan J, Donato Rondón JC (2016) Perspectives for an integrated understanding of tropical and temperate high-mountain lakes. J Limnol 75:215–234

    Article  Google Scholar 

  14. Cole ML, Kroeger KD, McClelland JW, Valiela I (2005) Macrophytes as indicators of land-derived wastewater: application of a delta N-15 method in aquatic systems. Water Resources Research 41

  15. Duque SR, Donato-Rondón J (1992) Biología y Ecología del fitoplancton de las aguas dulces en Colombia. Cuadernos Divulgativos 35:1–21

    Google Scholar 

  16. Fry B (2006) Stable isotope ecology. Springer, New York

    Book  Google Scholar 

  17. Guildford SJ, Hecky RE (2000) Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnol Oceanogr 45:1213–1223

    CAS  Article  Google Scholar 

  18. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls A, B, C1 and C2 in higher-plants, algae and natural phytoplankton. Biochemie Physiologie Der Pflanzen 167:191–194

    CAS  Article  Google Scholar 

  19. Jørgensen S, Tundisi J, Tundisi M (2013) Handbook of inland aquatic ecosystem management. CRC Press, Boca Raton

    Google Scholar 

  20. Kruk C, Huszar VLM, Peeters E, Bonilla S, Costa L, Lurling M, Reynolds CS, Scheffer M (2010) A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55:614–627

    Article  Google Scholar 

  21. Lewis WM (1987) Tropical limnology. Annu Rev Ecol Syst 18:159–184

    Article  Google Scholar 

  22. Lindeman R (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418

    Article  Google Scholar 

  23. Löffler H (1962) The limnology of tropical high-mountain lakes. Internationale Vereinigung fuer Theoretische Angewandte Limnologie Verhandlungen 15:176–193

    Google Scholar 

  24. Moore JW, Lambert TD, Heady WN, Honig SE, Osterback AMK, Phillis CC, Quiros AL, Retford NA, Herbst DB (2014) Anthropogenic land-use signals propagate through stream food webs in a California, USA, watershed. Limnologica 46:124–130

    CAS  Article  Google Scholar 

  25. Muñoz-López CL, Aranguren-Riano NJ, Duque SR (2017) Functional morphology of phytoplankton in a tropical high mountain lake: Tota Lake (Boyaca-Colombia). Revista De Biologia Tropical 65:669–683

    Google Scholar 

  26. Oczkowski A, Markham E, Hanson A, Wigand C (2014) Carbon stable isotopes as indicators of coastal eutrophication. Ecol Appl 24:457–466

    Article  Google Scholar 

  27. Parnell A (2016) Package ‘simmr’: a stable isotope mixing model. In

  28. Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, Semmens BX, Ward EJ (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92:823–835

    Article  Google Scholar 

  29. Post DM (2002) Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  30. Rangel O, Aguirre J (1983) Comunidades acuáticas altoandinas—I. Vegetación sumergida y de ribera en el lago de Tota. Boyacá Colombia Caldasia 65:719–742

    Google Scholar 

  31. Sickman JO, Melack JM, Clow DW (2003) Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada, California. Limnol Oceanogr 48:1885–1892

    CAS  Article  Google Scholar 

  32. Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207

    Article  Google Scholar 

  33. Toledo APd, Talarico M, García E (1983) A aplicacao de modelos simplificados para avaliacao do processo de eutrofizacao em lagos e reservatorios tropicais. In. CETESB Sao Paulo

  34. Utermöhl H (1958) Zur Vervollkommnung der quantitative Phytoplankton-Methodik. Mitteilungen des Internationalen Limnologie 9:1–38

    Google Scholar 

  35. Voss M, Struck U (1997) Stable nitrogen and carbon isotopes as indicator of eutrophication of the Oder river (Baltic sea). Mar Chem 59:35–49

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The Corpoboyacá and Fulbright Colombia provided funding for our project. We thank Alejandra Jiménez and Nidia Gil for helpful assistance in field.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Shurin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aranguren-Riaño, N.J., Shurin, J.B., Pedroza-Ramos, A. et al. Sources of nutrients behind recent eutrophication of Lago de Tota, a high mountain Andean lake. Aquat Sci 80, 39 (2018). https://doi.org/10.1007/s00027-018-0588-x

Download citation

Keywords

  • Eutrophication
  • Water quality
  • Aquaculture
  • Stable isotopes
  • Colombia